17,325 research outputs found

    How does learners’ behavior attract preservice teachers’ attention during teaching?

    Get PDF
    Teachers need to continuously monitor students’ engagement in classrooms, but novice teachers have difficulties paying attention to individual behavioral cues in all learners. To investigate these interaction processes in more detail, we re-analyzed eye-tracking data from preservice teachers teaching simulated learners who engaged in different behaviors (Stürmer, Seidel, Müller, Häusler, & Cortina, 2017). With a new methodological approach, we synchronized the data with a continuous annotation of observable student behavior and conducted time series analysis on 3646 s of video material. Results indicate that novice teachers’ attention is attracted most often when learners show (inter)active learning-related behavior

    MobiFace: A Novel Dataset for Mobile Face Tracking in the Wild

    Full text link
    Face tracking serves as the crucial initial step in mobile applications trying to analyse target faces over time in mobile settings. However, this problem has received little attention, mainly due to the scarcity of dedicated face tracking benchmarks. In this work, we introduce MobiFace, the first dataset for single face tracking in mobile situations. It consists of 80 unedited live-streaming mobile videos captured by 70 different smartphone users in fully unconstrained environments. Over 95K95K bounding boxes are manually labelled. The videos are carefully selected to cover typical smartphone usage. The videos are also annotated with 14 attributes, including 6 newly proposed attributes and 8 commonly seen in object tracking. 36 state-of-the-art trackers, including facial landmark trackers, generic object trackers and trackers that we have fine-tuned or improved, are evaluated. The results suggest that mobile face tracking cannot be solved through existing approaches. In addition, we show that fine-tuning on the MobiFace training data significantly boosts the performance of deep learning-based trackers, suggesting that MobiFace captures the unique characteristics of mobile face tracking. Our goal is to offer the community a diverse dataset to enable the design and evaluation of mobile face trackers. The dataset, annotations and the evaluation server will be on \url{https://mobiface.github.io/}.Comment: To appear on The 14th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2019

    Click Carving: Segmenting Objects in Video with Point Clicks

    Full text link
    We present a novel form of interactive video object segmentation where a few clicks by the user helps the system produce a full spatio-temporal segmentation of the object of interest. Whereas conventional interactive pipelines take the user's initialization as a starting point, we show the value in the system taking the lead even in initialization. In particular, for a given video frame, the system precomputes a ranked list of thousands of possible segmentation hypotheses (also referred to as object region proposals) using image and motion cues. Then, the user looks at the top ranked proposals, and clicks on the object boundary to carve away erroneous ones. This process iterates (typically 2-3 times), and each time the system revises the top ranked proposal set, until the user is satisfied with a resulting segmentation mask. Finally, the mask is propagated across the video to produce a spatio-temporal object tube. On three challenging datasets, we provide extensive comparisons with both existing work and simpler alternative methods. In all, the proposed Click Carving approach strikes an excellent balance of accuracy and human effort. It outperforms all similarly fast methods, and is competitive or better than those requiring 2 to 12 times the effort.Comment: A preliminary version of the material in this document was filed as University of Texas technical report no. UT AI16-0

    Computer-based tracking, analysis, and visualization of linguistically significant nonmanual events in American Sign Language (ASL)

    Full text link
    Our linguistically annotated American Sign Language (ASL) corpora have formed a basis for research to automate detection by computer of essential linguistic information conveyed through facial expressions and head movements. We have tracked head position and facial deformations, and used computational learning to discern specific grammatical markings. Our ability to detect, identify, and temporally localize the occurrence of such markings in ASL videos has recently been improved by incorporation of (1) new techniques for deformable model-based 3D tracking of head position and facial expressions, which provide significantly better tracking accuracy and recover quickly from temporary loss of track due to occlusion; and (2) a computational learning approach incorporating 2-level Conditional Random Fields (CRFs), suited to the multi-scale spatio-temporal characteristics of the data, which analyses not only low-level appearance characteristics, but also the patterns that enable identification of significant gestural components, such as periodic head movements and raised or lowered eyebrows. Here we summarize our linguistically motivated computational approach and the results for detection and recognition of nonmanual grammatical markings; demonstrate our data visualizations, and discuss the relevance for linguistic research; and describe work underway to enable such visualizations to be produced over large corpora and shared publicly on the Web

    Search Tracker: Human-derived object tracking in-the-wild through large-scale search and retrieval

    Full text link
    Humans use context and scene knowledge to easily localize moving objects in conditions of complex illumination changes, scene clutter and occlusions. In this paper, we present a method to leverage human knowledge in the form of annotated video libraries in a novel search and retrieval based setting to track objects in unseen video sequences. For every video sequence, a document that represents motion information is generated. Documents of the unseen video are queried against the library at multiple scales to find videos with similar motion characteristics. This provides us with coarse localization of objects in the unseen video. We further adapt these retrieved object locations to the new video using an efficient warping scheme. The proposed method is validated on in-the-wild video surveillance datasets where we outperform state-of-the-art appearance-based trackers. We also introduce a new challenging dataset with complex object appearance changes.Comment: Under review with the IEEE Transactions on Circuits and Systems for Video Technolog
    • …
    corecore