281 research outputs found

    5GAuRA. D3.3: RAN Analytics Mechanisms and Performance Benchmarking of Video, Time Critical, and Social Applications

    Get PDF
    5GAuRA deliverable D3.3.This is the final deliverable of Work Package 3 (WP3) of the 5GAuRA project, providing a report on the project’s developments on the topics of Radio Access Network (RAN) analytics and application performance benchmarking. The focus of this deliverable is to extend and deepen the methods and results provided in the 5GAuRA deliverable D3.2 in the context of specific use scenarios of video, time critical, and social applications. In this respect, four major topics of WP3 of 5GAuRA – namely edge-cloud enhanced RAN architecture, machine learning assisted Random Access Channel (RACH) approach, Multi-access Edge Computing (MEC) content caching, and active queue management – are put forward. Specifically, this document provides a detailed discussion on the service level agreement between tenant and service provider in the context of network slicing in Fifth Generation (5G) communication networks. Network slicing is considered as a key enabler to 5G communication system. Legacy telecommunication networks have been providing various services to all kinds of customers through a single network infrastructure. In contrast, by deploying network slicing, operators are now able to partition one network into individual slices, each with its own configuration and Quality of Service (QoS) requirements. There are many applications across industry that open new business opportunities with new business models. Every application instance requires an independent slice with its own network functions and features, whereby every single slice needs an individual Service Level Agreement (SLA). In D3.3, we propose a comprehensive end-to-end structure of SLA between the tenant and the service provider of sliced 5G network, which balances the interests of both sides. The proposed SLA defines reliability, availability, and performance of delivered telecommunication services in order to ensure that right information is delivered to the right destination at right time, safely and securely. We also discuss the metrics of slicebased network SLA such as throughput, penalty, cost, revenue, profit, and QoS related metrics, which are, in the view of 5GAuRA, critical features of the agreement.Peer ReviewedPostprint (published version

    A holistic model of emergency evacuations in large, complex, public occupancy buildings

    Get PDF
    Evacuations are crucial for ensuring the safety of building occupants in the event of an emergency. In large, complex, public occupancy buildings (LCPOBs) these procedures are significantly more complex than the simple withdrawal of people from a building. This thesis has developed a novel, holistic, theoretical model of emergency evacuations in LCPOBs inspired by systems safety theory. LCPOBs are integral components of complex socio-technical systems, and therefore the model describes emergency evacuations as control actions initiated in order to return the building from an unsafe state to a safe state where occupants are not at risk of harm. The emergency evacuation process itself is comprised of four aspects - the movement (of building occupants), planning and management, environmental features, and evacuee behaviour. To demonstrate its utility and applicability, the model has been employed to examine various aspects of evacuation procedures in two example LCPOBs - airport terminals, and sports stadiums. The types of emergency events initiating evacuations in these buildings were identified through a novel hazard analysis procedure, which utilised online news articles to create events databases of previous evacuations. Security and terrorism events, false alarms, and fires were found to be the most common cause of evacuations in these buildings. The management of evacuations was explored through model-based systems engineering techniques, which identified the communication methods and responsibilities of staff members managing these events. Social media posts for an active shooting event were analysed using qualitative and machine learning methods to determine their utility for situational awareness. This data source is likely not informative for this purpose, as few posts detail occupant behaviours. Finally, an experimental study on pedestrian dynamics with movement devices was conducted, which determined that walking speeds during evacuations were unaffected by evacuees dragging luggage, but those pushing pushchairs and wheelchairs will walk significantly slower.Open Acces

    Bridges of the BeltLine

    Get PDF
    As currently realized, the Atlanta BeltLine weaves under, over, and through a multitude of overpasses, footbridges, and tunnels. As in any city, this significant feature is simultaneously an asset and a potential hazard. These types of structures are "vulnerable critical facilities" that should be included in emergency risk assessments and mitigation planning (FEMA, 2013). As such, the Bridges of the BeltLine project was proposed as a mixed-methods study to understand how people's movement along the BeltLine can inform emergency management mitigation, planning, and response. Understanding pedestrian flow in cities has been underfunded and understudied but is nonetheless critical to city infrastructure monitoring and improvement projects. This study focused on developing inexpensive, low-power consumption sensors capable of detecting human presence while preserving privacy, as well as a survey designed to collect data that the sensors cannot. The survey data were intended to describe BeltLine users, querying on demographics, reasons, frequency, duration of use, and mode of travel to and on the BeltLine. After conferring with the Atlanta BeltLine, Inc. (ABI) leadership, it became apparent that ABI's primary interest is in understanding which communities are being served by the BeltLine and whether it has changed commuting and travel behaviors or created new demand. As a result, the project's original focus on emergency management was expanded to explore which communities are being served and for what kind of use. As such, the project's revised objective was two-fold: to facilitate understanding of (a) whether the BeltLine is serving the adjacent communities and purpose of use and (b) to inform emergency mitigation, planning, and response.This research was made possible by a grant from Georgia Tech's Executive Vice President of Research, Small Bets Seed Grants program, with supplemental funding from the Center for the Development and Application of Internet of Things Technologies (CDAIT)

    A quantitative approach to engineering fire life safety in modern underground coal mines

    Get PDF
    Emerging from a history of blanket approach prescriptive fire protection design, underground coal mining is rapidly embracing fire life safety analysis techniques that have been successfully used in performance-based fire engineering in the built environment. In Australia, the leading practice fire engineering approach is to apply the International Fire Engineering Guidelines (ABCB 2005) and its methods as a design assessment framework. This approach has recently been used to quantify the performance of mine fire detection and therefore control of fire spread, paving the way for improvements in mine fire intervention and mine worker escape. This paper presents a method of early fire detection using closed circuit television cameras and video analysis software associated with fixed plant fires leading to increased available safe evacuation time compared with contemporary point type fire detectors and gas monitoring sensors. Successful pilot tests of the fire detection technology have been carried out in simulated mine conditions. A quantified and scientifically informed risk-based approach, offering improvements in mine fire rescue intervention and evacuation methodologies was achieved

    Fault diagnosis for IP-based network with real-time conditions

    Get PDF
    BACKGROUND: Fault diagnosis techniques have been based on many paradigms, which derive from diverse areas and have different purposes: obtaining a representation model of the network for fault localization, selecting optimal probe sets for monitoring network devices, reducing fault detection time, and detecting faulty components in the network. Although there are several solutions for diagnosing network faults, there are still challenges to be faced: a fault diagnosis solution needs to always be available and able enough to process data timely, because stale results inhibit the quality and speed of informed decision-making. Also, there is no non-invasive technique to continuously diagnose the network symptoms without leaving the system vulnerable to any failures, nor a resilient technique to the network's dynamic changes, which can cause new failures with different symptoms. AIMS: This thesis aims to propose a model for the continuous and timely diagnosis of IP-based networks faults, independent of the network structure, and based on data analytics techniques. METHOD(S): This research's point of departure was the hypothesis of a fault propagation phenomenon that allows the observation of failure symptoms at a higher network level than the fault origin. Thus, for the model's construction, monitoring data was collected from an extensive campus network in which impact link failures were induced at different instants of time and with different duration. These data correspond to widely used parameters in the actual management of a network. The collected data allowed us to understand the faults' behavior and how they are manifested at a peripheral level. Based on this understanding and a data analytics process, the first three modules of our model, named PALADIN, were proposed (Identify, Collection and Structuring), which define the data collection peripherally and the necessary data pre-processing to obtain the description of the network's state at a given moment. These modules give the model the ability to structure the data considering the delays of the multiple responses that the network delivers to a single monitoring probe and the multiple network interfaces that a peripheral device may have. Thus, a structured data stream is obtained, and it is ready to be analyzed. For this analysis, it was necessary to implement an incremental learning framework that respects networks' dynamic nature. It comprises three elements, an incremental learning algorithm, a data rebalancing strategy, and a concept drift detector. This framework is the fourth module of the PALADIN model named Diagnosis. In order to evaluate the PALADIN model, the Diagnosis module was implemented with 25 different incremental algorithms, ADWIN as concept-drift detector and SMOTE (adapted to streaming scenario) as the rebalancing strategy. On the other hand, a dataset was built through the first modules of the PALADIN model (SOFI dataset), which means that these data are the incoming data stream of the Diagnosis module used to evaluate its performance. The PALADIN Diagnosis module performs an online classification of network failures, so it is a learning model that must be evaluated in a stream context. Prequential evaluation is the most used method to perform this task, so we adopt this process to evaluate the model's performance over time through several stream evaluation metrics. RESULTS: This research first evidences the phenomenon of impact fault propagation, making it possible to detect fault symptoms at a monitored network's peripheral level. It translates into non-invasive monitoring of the network. Second, the PALADIN model is the major contribution in the fault detection context because it covers two aspects. An online learning model to continuously process the network symptoms and detect internal failures. Moreover, the concept-drift detection and rebalance data stream components which make resilience to dynamic network changes possible. Third, it is well known that the amount of available real-world datasets for imbalanced stream classification context is still too small. That number is further reduced for the networking context. The SOFI dataset obtained with the first modules of the PALADIN model contributes to that number and encourages works related to unbalanced data streams and those related to network fault diagnosis. CONCLUSIONS: The proposed model contains the necessary elements for the continuous and timely diagnosis of IPbased network faults; it introduces the idea of periodical monitorization of peripheral network elements and uses data analytics techniques to process it. Based on the analysis, processing, and classification of peripherally collected data, it can be concluded that PALADIN achieves the objective. The results indicate that the peripheral monitorization allows diagnosing faults in the internal network; besides, the diagnosis process needs an incremental learning process, conceptdrift detection elements, and rebalancing strategy. The results of the experiments showed that PALADIN makes it possible to learn from the network manifestations and diagnose internal network failures. The latter was verified with 25 different incremental algorithms, ADWIN as concept-drift detector and SMOTE (adapted to streaming scenario) as the rebalancing strategy. This research clearly illustrates that it is unnecessary to monitor all the internal network elements to detect a network's failures; instead, it is enough to choose the peripheral elements to be monitored. Furthermore, with proper processing of the collected status and traffic descriptors, it is possible to learn from the arriving data using incremental learning in cooperation with data rebalancing and concept drift approaches. This proposal continuously diagnoses the network symptoms without leaving the system vulnerable to failures while being resilient to the network's dynamic changes.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: José Manuel Molina López.- Secretario: Juan Carlos Dueñas López.- Vocal: Juan Manuel Corchado Rodrígue

    Looking towards the future: the changing nature of intrusive surveillance and technical attacks against high-profile targets

    Get PDF
    In this thesis a novel Bayesian model is developed that is capable of predicting the probability of a range of eavesdropping techniques deployed, given an attacker's capability, opportunity and intent. Whilst limited attention by academia has focused on the cold war activities of Soviet bloc and Western allies' bugging of embassies, even less attention has been paid to the changing nature of the technology used for these eavesdropping events. This thesis makes four contributions: through the analysis of technical eavesdropping events over the last century, technological innovation is shown to have enriched the eavesdropping opportunities for a range of capabilities. The entry barrier for effective eavesdropping is lowered, while for the well resourced eavesdropper, the requirement for close access has been replaced by remote access opportunities. A new way to consider eavesdropping methods is presented through the expert elicitation of capability and opportunity requirements for a range of present-day eavesdropping techniques. Eavesdropping technology is shown to have life-cycle stages with the technology exploited by different capabilities at different times. Three case studies illustrate that yesterday’s secretive government method becomes today’s commodity. The significance of the egress transmission path is considered too. Finally, by using the expert elicitation information derived for capability, opportunity and life-cycle position, for a range of eavesdropping techniques, it is shown that it is possible to predict the probability of particular eavesdropping techniques being deployed. This novel Bayesian inferencing model enables scenarios with incomplete, uncertain or missing detail to be considered. The model is validated against the previously collated historic eavesdropping events. The development of this concept may be scaled with additional eavesdropping techniques to form the basis of a tool for security professionals or risk managers wishing to define eavesdropping threat advice or create eavesdropping policies based on the rigour of this technological study.Open Acces

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures comprise of many interconnected cyber and physical assets, and as such are large scale cyber-physical systems. Hence, the conventional approach of securing these infrastructures by addressing cyber security and physical security separately is no longer effective. Rather more integrated approaches that address the security of cyber and physical assets at the same time are required. This book presents integrated (i.e. cyber and physical) security approaches and technologies for the critical infrastructures that underpin our societies. Specifically, it introduces advanced techniques for threat detection, risk assessment and security information sharing, based on leading edge technologies like machine learning, security knowledge modelling, IoT security and distributed ledger infrastructures. Likewise, it presets how established security technologies like Security Information and Event Management (SIEM), pen-testing, vulnerability assessment and security data analytics can be used in the context of integrated Critical Infrastructure Protection. The novel methods and techniques of the book are exemplified in case studies involving critical infrastructures in four industrial sectors, namely finance, healthcare, energy and communications. The peculiarities of critical infrastructure protection in each one of these sectors is discussed and addressed based on sector-specific solutions. The advent of the fourth industrial revolution (Industry 4.0) is expected to increase the cyber-physical nature of critical infrastructures as well as their interconnection in the scope of sectorial and cross-sector value chains. Therefore, the demand for solutions that foster the interplay between cyber and physical security, and enable Cyber-Physical Threat Intelligence is likely to explode. In this book, we have shed light on the structure of such integrated security systems, as well as on the technologies that will underpin their operation. We hope that Security and Critical Infrastructure Protection stakeholders will find the book useful when planning their future security strategies

    A survey of IoT security based on a layered architecture of sensing and data analysis

    Get PDF
    The Internet of Things (IoT) is leading today’s digital transformation. Relying on a combination of technologies, protocols, and devices such as wireless sensors and newly developed wearable and implanted sensors, IoT is changing every aspect of daily life, especially recent applications in digital healthcare. IoT incorporates various kinds of hardware, communication protocols, and services. This IoT diversity can be viewed as a double-edged sword that provides comfort to users but can lead also to a large number of security threats and attacks. In this survey paper, a new compacted and optimized architecture for IoT is proposed based on five layers. Likewise, we propose a new classification of security threats and attacks based on new IoT architecture. The IoT architecture involves a physical perception layer, a network and protocol layer, a transport layer, an application layer, and a data and cloud services layer. First, the physical sensing layer incorporates the basic hardware used by IoT. Second, we highlight the various network and protocol technologies employed by IoT, and review the security threats and solutions. Transport protocols are exhibited and the security threats against them are discussed while providing common solutions. Then, the application layer involves application protocols and lightweight encryption algorithms for IoT. Finally, in the data and cloud services layer, the main important security features of IoT cloud platforms are addressed, involving confidentiality, integrity, authorization, authentication, and encryption protocols. The paper is concluded by presenting the open research issues and future directions towards securing IoT, including the lack of standardized lightweight encryption algorithms, the use of machine-learning algorithms to enhance security and the related challenges, the use of Blockchain to address security challenges in IoT, and the implications of IoT deployment in 5G and beyond

    3D GEOSPATIAL INDOOR NAVIGATION FOR DISASTER RISK REDUCTION AND RESPONSE IN URBAN ENVIRONMENT

    Get PDF
    Disaster management for urban environments with complex structures requires 3D extensions of indoor applications to support better risk reduction and response strategies. The paper highlights the need for assessment and explores the role of 3D geospatial information and modeling regarding the indoor structure and navigational routes which can be utilized as disaster risk reduction and response strategy. The reviewed models or methods are analysed testing parameters in the context of indoor risk and disaster management. These parameters are level of detail, connection to outdoor, spatial model and network, handling constraints. 3D reconstruction of indoors requires the structural data to be collected in a feasible manner with sufficient details. Defining the indoor space along with obstacles is important for navigation. Readily available technologies embedded in smartphones allow development of mobile applications for data collection, visualization and navigation enabling access by masses at low cost. The paper concludes with recommendations for 3D modeling, navigation and visualization of data using readily available smartphone technologies, drones as well as advanced robotics for Disaster Management
    corecore