1,723 research outputs found

    Vicinity-based Replica Finding in Named Data Networking

    Get PDF
    In Named Data Networking (NDN) architectures, a content object is located according to the content's identifier and can be retrieved from all nodes that hold a replica of the content. The default forwarding strategy of NDN is to forward an Interest packet along the default path from the requester to the server to find a content object according to its name prefix. However, the best path may not be the default path, since content might also be located nearby. Hence, the default strategy could result in a sub-optimal delivery efficiency. To address this issue we introduce a vicinity-based replica finding scheme. This is based on the observation that content objects might be requested several times. Therefore, replicas can be often cached within a particular neighbourhood and thus it might be efficient to specifically look for them in order to improve the content delivery performance. Within this paper, we evaluate the optimal size of the vicinity within which content should be located (i.e. the distance between the requester and its neighbours that are considered within the content search). We also compare the proposed scheme with the default NDN forwarding strategy with respect to replica finding efficiency and network overhead. Using the proposed scheme, we demonstrate that the replica finding mechanism reduces the delivery time effectively with acceptable overhead costs

    Improved Content Finding in Named Data Networking

    Get PDF
    In today’s Internet, the current architecture may not be able to support various challenges (e.g., security, mobility, scalability, and quality of service) in a sufficient level. Information-centric communication model is expected to address the bottleneck of the traditional host-centric model. A number of Information Centric Network (ICN) approaches have been proposed by aiming to replace or augment the current host-to-host routing architecture. ICN focuses on finding and transmitting content to end-users and content routing is location-independent, thereby being able to support multi-sourcing for content consumers. Named Data Networking (NDN) is one of the promising ICN proposals that allows users (i.e., consumers) to find content objects by their names. In the default forwarding strategy of NDN, an interest packet is forwarded to locate content. A corresponding data packet will be returned back in the reverse path to its requester and will be replicated along this path (called on-path caching). When a consumer requests a content object, it may be found at an intermediate on-path cache. However, several replicas that are often cached off-path especially in nearby nodes of the consumer’s vicinity could be the better potential source but they are not effectively utilised, causing a worse than necessary delivery efficiency. Therefore, this thesis investigates the potential of off-path content finding in NDN. We examine how we can design a flexible and efficient solution to supplement the existing NDN architecture. We then propose a new design called a Vicinity-based Content Finding scheme (VCoF) to utilise nearby replicas in each vicinity for improving content finding. This includes analysing the efficiency of the proposed scheme in comparison to default NDN. We consider content popularity, which can impact content finding results due to the different number of content replicas (i.e., content availability). We also explore our scheme in supporting mobility, particularly for the issues of missing content because of handover. Through a prototype implementation, we evaluate the delivery efficiency against overhead costs in different scenarios, made possible through effective deployment on real NDN environments

    Asymptotic Laws for Joint Content Replication and Delivery in Wireless Networks

    Full text link
    We investigate on the scalability of multihop wireless communications, a major concern in networking, for the case that users access content replicated across the nodes. In contrast to the standard paradigm of randomly selected communicating pairs, content replication is efficient for certain regimes of file popularity, cache and network size. Our study begins with the detailed joint content replication and delivery problem on a 2D square grid, a hard combinatorial optimization. This is reduced to a simpler problem based on replication density, whose performance is of the same order as the original. Assuming a Zipf popularity law, and letting the size of content and network both go to infinity, we identify the scaling laws and regimes of the required link capacity, ranging from O(\sqrt{N}) down to O(1)

    Object Distribution Networks for World-wide Document Circulation

    Get PDF
    This paper presents an Object Distribution System (ODS), a distributed system inspired by the ultra-large scale distribution models used in everyday life (e.g. food or newspapers distribution chains). Beyond traditional mechanisms of approaching information to readers (e.g. caching and mirroring), this system enables the publication, classification and subscription to volumes of objects (e.g. documents, events). Authors submit their contents to publication agents. Classification authorities provide classification schemes to classify objects. Readers subscribe to topics or authors, and retrieve contents from their local delivery agent (like a kiosk or library, with local copies of objects). Object distribution is an independent process where objects circulate asynchronously among distribution agents. ODS is designed to perform specially well in an increasingly populated, widespread and complex Internet jungle, using weak consistency replication by object distribution, asynchronous replication, and local access to objects by clients. ODS is based on two independent virtual networks, one dedicated to the distribution (replication) of objects and the other to calculate optimised distribution chains to be applied by the first network

    PDRM : a proactive data replication mechanism to improve content mobility support in NDN using location awareness

    Get PDF
    The problem of handling user mobility has been around since mobile devices became capable of handling multimedia content and is still one of the most relevant challenges in networking. The conventional Internet architecture is inadequate in dealing with an ever-growing number of mobile devices that are both consuming and producing content. Named Data Networking (NDN) is a network architecture that can potentially overcome this mobility challenge. It supports consumer mobility by design but fails to offer the same level of support for content mobility. Content mobility requires guaranteeing that consumers manage to find and retrieve desired content even when the corresponding producer (or primary host) is not available. In this thesis, we propose PDRM, a Proactive and locality-aware Data Replication Mechanism that increases content availability through data redundancy in the context of the NDN architecture. It explores available resources from end-users in the vicinity to improve content availability even in the case of producer mobility. Throughout the thesis, we discuss the design of PDRM, evaluate the impact of the number of available providers in the vicinity and in-network cache capacity on its operation, and compare its performance to Vanilla NDN and two state-of-the-art proposals. The evaluation indicates that PDRM improves content mobility support due to using object popularity information and spare resources in the vicinity to help the proactive replication. Results show that PDRM can reduce the download times up to 53.55%, producer load up to 71.6%, inter-domain traffic up to 46.5%, and generated overhead up to 25% compared to Vanilla NDN and other evaluated mechanisms.O problema de lidar com a mobilidade dos usuĂĄrios existe desde que os dispositivos mĂłveis se tornaram capazes de lidar com conteĂșdo multimĂ­dia e ainda Ă© um dos desafios mais relevantes na ĂĄrea de redes de computadores. A arquitetura de Internet convencional Ă© inadequada em lidar com um nĂșmero cada vez maior de dispositivos mĂłveis que estĂŁo tanto consumindo quanto produzindo conteĂșdo. Named Data Networking (NDN) Ă© uma arquitetura de rede que pode potencialmente superar este desafio de mobilidade. Ela suporta a mobilidade do consumidor nativamente, mas nĂŁo oferece o mesmo nĂ­vel de suporte para a mobilidade de conteĂșdo. A mobilidade de conteĂșdo exige garantir que os consumidores consigam encontrar e recuperar o conteĂșdo desejado mesmo quando o produtor correspondente (ou o hospedeiro principal) nĂŁo estiver disponĂ­vel. Nesta tese, propomos o PDRM (Proactive Data Replication Mechanism), um mecanismo de replicação de dados proativo e consciente de localização, que aumenta a disponibilidade de conteĂșdo atravĂ©s da redundĂąncia de dados no contexto da arquitetura NDN. Ele explora os recursos disponĂ­veis dos usuĂĄrios finais na vizinhança para melhorar a disponibilidade de conteĂșdo, mesmo no caso da mobilidade do produtor. Ao longo da tese, discutimos o projeto do PDRM, avaliamos o impacto do nĂșmero de provedores disponĂ­veis na vizinhança e a capacidade de cache na rede em sua operação e comparamos seu desempenho com NDN padrĂŁo e duas propostas do estado-da-arte. A avaliação indica que o PDRM melhora o suporte Ă  mobilidade de conteĂșdo devido ao uso de informaçÔes de popularidade dos objetos e recursos extras na vizinhança para ajudar a replicação prĂł-ativa. Os resultados mostram que o PDRM pode reduzir os tempos de download atĂ© 53,55%, o carregamento do produtor atĂ© 71,6%, o trĂĄfego entre domĂ­nios atĂ© 46,5% e a sobrecarga gerada atĂ© 25% em comparação com NDN padrĂŁo e os demais mecanismos avaliados

    Cloud-based Content Distribution on a Budget

    Full text link
    To leverage the elastic nature of cloud computing, a solution provider must be able to accurately gauge demand for its offering. For applications that involve swarm-to-cloud interactions, gauging such demand is not straightforward. In this paper, we propose a general framework, analyze a mathematical model, and present a prototype implementation of a canonical swarm-to-cloud application, namely peer-assisted content delivery. Our system – called Cyclops – dynamically adjusts the off-cloud bandwidth consumed by content servers (which represents the bulk of the provider's cost) to feed a set of swarming clients, based on a feedback signal that gauges the real-time health of the swarm. Our extensive evaluation of Cyclops in a variety of settings – including controlled PlanetLab and live Internet experiments involving thousands of users – show significant reduction in content distribution costs (by as much as two orders of magnitude) when compared to non-feedback-based swarming solutions, with minor impact on content delivery times

    Novel applications and contexts for the cognitive packet network

    Get PDF
    Autonomic communication, which is the development of self-configuring, self-adapting, self-optimising and self-healing communication systems, has gained much attention in the network research community. This can be explained by the increasing demand for more sophisticated networking technologies with physical realities that possess computation capabilities and can operate successfully with minimum human intervention. Such systems are driving innovative applications and services that improve the quality of life of citizens both socially and economically. Furthermore, autonomic communication, because of its decentralised approach to communication, is also being explored by the research community as an alternative to centralised control infrastructures for efficient management of large networks. This thesis studies one of the successful contributions in the autonomic communication research, the Cognitive Packet Network (CPN). CPN is a highly scalable adaptive routing protocol that allows for decentralised control in communication. Consequently, CPN has achieved significant successes, and because of the direction of research, we expect it to continue to find relevance. To investigate this hypothesis, we research new applications and contexts for CPN. This thesis first studies Information-Centric Networking (ICN), a future Internet architecture proposal. ICN adopts a data-centric approach such that contents are directly addressable at the network level and in-network caching is easily supported. An optimal caching strategy for an information-centric network is first analysed, and approximate solutions are developed and evaluated. Furthermore, a CPN inspired forwarding strategy for directing requests in such a way that exploits the in-network caching capability of ICN is proposed. The proposed strategy is evaluated via discrete event simulations and shown to be more effective in its search for local cache hits compared to the conventional methods. Finally, CPN is proposed to implement the routing system of an Emergency Cyber-Physical System for guiding evacuees in confined spaces in emergency situations. By exploiting CPN’s QoS capabilities, different paths are assigned to evacuees based on their ongoing health conditions using well-defined path metrics. The proposed system is evaluated via discrete-event simulations and shown to improve survival chances compared to a static system that treats evacuees in the same way.Open Acces
    • 

    corecore