617 research outputs found

    Good vibrations: Guiding body movements with vibrotactile feedback

    Get PDF
    We describe the ongoing development of a system to support the teaching of good posture and bowing technique to novice violin players. Using an inertial motion capture system we can track in real-time a player’s bowing action and how it deviates from a target trajectory set by their music teacher. The system provides real-time vibrotactile feedback on the correctness of the student’s posture and bowing action. We present the findings of an initial study that shows that vibrotactile feedback can guide arm movements in one and two dimension pointing tasks. The advantages of vibrotactile feedback for teaching basic bowing technique to novice violin players are that it does not place demands on the students’ visual and auditory systems which are already heavily involved in the activity of music making, and is understood with little training

    Virtual Training via Vibrotactile Arrays

    Get PDF
    What is often missing from many virtual worlds and training simulations is a physical sense of the confinement and constraint of the virtual environment. We present a method for providing localized cutaneous vibratory feedback to the user’s right arm. We created a sleeve of tactors linked to a real-time human model; the tactors activate to apply sensation to the corresponding body area. The hypothesis is that vibrotactile feedback to body areas provides the wearer sufficient guidance to assume correct body configurations and ascertain the existence and physical realism of access paths. We present the results of human subject experiments that study both explicit and implicit training of skills using vibrotactile arrays. Implicitly, collision awareness is achieved by activating the appropriate tactor when a body part collides with the scene; thus, the user will attempt to correct his or her body configuration. Explicitly, we use the tactors to guide the body into the proper configuration. The results of human subject experiments clearly show that the use of full arm vibrotactile feedback improves performance over purely visual feedback for navigating the virtual environment, as well as allowing easy acquisition of new skills. These results validate the empirical performance of this concept

    Multimodal “sensory illusions” for improving spatial awareness in virtual environments

    Get PDF
    Inaccurate judgement of distances in virtual environments (VEs) restricts their usefulness for engineering development, in which engineers must have a good understanding of the spaces they are designing. Multimodal feedback can improve depth perception in VEs, but this has yet to be implemented and tested in engineering applications with systems which provide haptic feedback to the body. The project reported in this paper will develop a multimodal VE to improve engineers’ understanding of 3D spaces. It will test the concept of “sensory illusions” where the point of collision in the VE differs to the point of haptic feedback on the body. This will permit the use of fewer vibrotactile devices and therefore the development of a more wearable system. This paper describes related work in multisensory and tactile stimulation which suggests that our perception of a stimulus is not fixed to the point of contact

    Collision Awareness Using Vibrotactile Arrays

    Get PDF
    What is often missing from many virtual worlds is a physical sense of the confinement and constraint of the virtual environment. To address this issue, we present a method for providing localized cutaneous vibratory feedback to the user’s right arm. We created a sleeve of tactors linked to a real-time human model that activates when the corresponding body area collides with an object. The hypothesis is that vibrotactile feedback to body areas provides the wearer sufficient guidance to acertain the existence and physical realism of access paths and body configurations. The results of human subject experiments clearly show that the use of full arm vibrotactile feedback improves performance over purely visual feedback in navigating the virtual environment. These results validate the empirical performance of this concept

    Operators' Accessibility Studies using Virtual Reality

    Get PDF
    International audienceThe development of fusion plants is more and more challenging. Compared to previous fusion experimental devices, integration constraints, maintenance and safety requirements are key parameters in the ITER project. Components are designed in parallel and we must consider integration, assembly and maintenance issues, which might have a huge impact on the overall design. That also implies to consider the operator's feedback to assess the feasibility of accessibility or maintenance processes. Virtual reality (VR) provides tools to optimize such integration. In 2010, the CEA IRFM decided to upgrade its design tools, by using VR during the life cycle (from design to operation) of a fusion component. The VR platform is intensively used in the design and assembly studies of WEST components. In particular, feasibility of the assembly scenario is assessed by the operators involving in the real assembly work. To study this aspect, the use of static manikins is quite frequent in the industry. However, more complex studies, like the feasibility of assembly and maintenance tasks in complex and very confined environments, require enhanced features such as dynamic and biomechanically realistic virtual humans. We also study the contribution of tactile feedback to improve physical presence and interaction in the virtual environment (VE), which is very important for the validation of a given task's feasibility and the ergonomic evaluation of the posture and gesture of the operator. In particular, we show that adapted behavior in respect to physical elements of the VE can be obtained using a dynamic co-localized representation of the subject's body and a pseudo-haptic tactile feedback. In this paper, we present integration studies involving operators and recent advances in the assessment of maintenance feasibility

    Enhanced Collision Perception Using Tactile Feedback

    Get PDF
    We used a custom designed tactor suit to provide full body vibrotactile feedback across the human arm for the purpose of enabling users to perceive a physical sense of collisions in a virtual world. We constructed a 3-D virtual environment to test arm reach movements. We present the results of human subject trials that test the benefit of using vibrotactile feedback for this purpose. Our preliminary results presented here show a small, but distinct, advantage with the use of tactors. With additional refinements to the system, improved performance results can be obtained

    A Low Cost Tactor Suit for Vibrotactile Feedback

    Get PDF
    We constructed low cost tactors for vibrotactile feedback across the human arm for the purpose of providing a physical sensation surrogate for virtual objects. The tactors were built from readily available commercial parts, and provide low amplitude vibration for tactile feedback. The tactors are Velcro mounted on a custom suit designed to ensure localized sensations of each tactor. The suit is designed to be compatible with standard motion capture devices. Our suit provides 24 vibratory tactors in a tactor array on the user’s right arm and hand, and can easily be expanded to include the entire torso and body

    In-Vehicle Human Machine Interface: Investigating the Effects of Tactile Displays on Information Presentation in Automated Vehicles

    Get PDF
    Background: Semi-autonomous vehicles still require human drivers to take over when the automated systems can no longer perform the driving task. Objective: The goal of this study was to design and test the effects of six meaningful tactile signal types, representing six driving scenarios (i.e., navigation, speed, surrounding vehicles, over the speed limit, headway reductions, and pedestrian status) respectively, and two pattern durations (lower and higher urgencies), on drivers\u27 perception and performance during automated driving. Methods: Sixteen volunteers participated in an experiment utilizing a medium-fidelity driving simulator presenting vibrotactile signals via 20 tactors embedded in the seat back, pan, and belt. Participants completed four separate driving sessions with 30 tactile signals presented randomly throughout each drive. Reaction times (RT), interpretation accuracy, and subjective ratings were measured. Results: Results illustrated shorter RTs and higher intuitive ratings for higher urgency patterns than lower urgency patterns. Pedestrian status and headway reduction signals were associated with shorter RTs and increased confidence ratings, compared to other tactile signal types. Lastly, among six tactile signals, surrounding vehicle and navigation signal types had the highest interpretation accuracy. Conclusion: These results will be used as preliminary data for future studies that aim to investigate the effects of meaningful tactile displays on automated vehicle takeover performance in complex situations (e.g., urban areas) where actual takeovers are required. The findings of this study will inform the design of next-generation in-vehicle human-machine interfaces
    • …
    corecore