25 research outputs found

    Vibrotactile Signal Generation from Texture Images or Attributes using Generative Adversarial Network

    Full text link
    Providing vibrotactile feedback that corresponds to the state of the virtual texture surfaces allows users to sense haptic properties of them. However, hand-tuning such vibrotactile stimuli for every state of the texture takes much time. Therefore, we propose a new approach to create models that realize the automatic vibrotactile generation from texture images or attributes. In this paper, we make the first attempt to generate the vibrotactile stimuli leveraging the power of deep generative adversarial training. Specifically, we use conditional generative adversarial networks (GANs) to achieve generation of vibration during moving a pen on the surface. The preliminary user study showed that users could not discriminate generated signals and genuine ones and users felt realism for generated signals. Thus our model could provide the appropriate vibration according to the texture images or the attributes of them. Our approach is applicable to any case where the users touch the various surfaces in a predefined way.Comment: accepted for EuroHaptics 2018: Haptics: Science, Technology, and Applications, pp.25-3

    Development and Evaluation of a Learning-based Model for Real-time Haptic Texture Rendering

    Full text link
    Current Virtual Reality (VR) environments lack the rich haptic signals that humans experience during real-life interactions, such as the sensation of texture during lateral movement on a surface. Adding realistic haptic textures to VR environments requires a model that generalizes to variations of a user's interaction and to the wide variety of existing textures in the world. Current methodologies for haptic texture rendering exist, but they usually develop one model per texture, resulting in low scalability. We present a deep learning-based action-conditional model for haptic texture rendering and evaluate its perceptual performance in rendering realistic texture vibrations through a multi part human user study. This model is unified over all materials and uses data from a vision-based tactile sensor (GelSight) to render the appropriate surface conditioned on the user's action in real time. For rendering texture, we use a high-bandwidth vibrotactile transducer attached to a 3D Systems Touch device. The result of our user study shows that our learning-based method creates high-frequency texture renderings with comparable or better quality than state-of-the-art methods without the need for learning a separate model per texture. Furthermore, we show that the method is capable of rendering previously unseen textures using a single GelSight image of their surface.Comment: 10 pages, 8 figure

    Learning discriminative features for human motion understanding

    Get PDF
    Human motion understanding has attracted considerable interest in recent research for its applications to video surveillance, content-based search and healthcare. With different capturing methods, human motion can be recorded in various forms (e.g. skeletal data, video, image, etc.). Compared to the 2D video and image, skeletal data recorded by motion capture device contains full 3D movement information. To begin with, we first look into a gait motion analysis problem based on 3D skeletal data. We propose an automatic framework for identifying musculoskeletal and neurological disorders among older people based on 3D skeletal motion data. In this framework, a feature selection strategy and two new gait features are proposed to choose an optimal feature set from the input features to optimise classification accuracy. Due to self-occlusion caused by single shooting angle, 2D video and image are not able to record full 3D geometric information. Therefore, viewpoint variation dramatically affects the performance on lots of 2D based applications (e.g. arbitrary view action recognition and image-based 3D human shape reconstruction). Leveraging view-invariance from the 3D model is a popular idea to improve the performance on 2D computer vision problems. Therefore, in the second contribution, we adopt 3D models built with computer graphics technology to assist in solving the problem of arbitrary view action recognition. As a solution, a new transfer dictionary learning framework that utilises computer graphics technologies to synthesise realistic 2D and 3D training videos is proposed, which can project a real-world 2D video into a view-invariant sparse representation. In the third contribution, 3D models are utilised to build an end-to-end 3D human shape reconstruction system, which can recover the 3D human shape from a single image without any prior parametric model. In contrast to most existing methods that calculate 3D joint locations, the method proposed in this thesis can produce a richer and more useful point cloud based representation. Synthesised high-quality 2D images and dense 3D point clouds are used to train a CNN-based encoder and 3D regression module. It can be concluded that the methods introduced in this thesis try to explore human motion understanding from 3D to 2D. We investigate how to compensate for the lack of full geometric information in 2D based applications with view-invariance learnt from 3D models

    Proceedings of the 19th Sound and Music Computing Conference

    Get PDF
    Proceedings of the 19th Sound and Music Computing Conference - June 5-12, 2022 - Saint-Étienne (France). https://smc22.grame.f

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic interactions in virtual environments

    Get PDF
    This book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic Interactions in Virtual Environments

    Get PDF
    corecore