106 research outputs found

    An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback

    Get PDF
    Abstract Background Haptic display technologies are well suited to relay proprioceptive, force, and contact cues from a prosthetic terminal device back to the residual limb and thereby reduce reliance on visual feedback. The ease with which an amputee interprets these haptic cues, however, likely depends on whether their dynamic signal behavior corresponds to expected behaviors—behaviors consonant with a natural limb coupled to the environment. A highly geared motor in a terminal device along with the associated high back-drive impedance influences dynamic interactions with the environment, creating effects not encountered with a natural limb. Here we explore grasp and lift performance with a backdrivable (low backdrive impedance) terminal device placed under proportional myoelectric position control that features referred haptic feedback. Methods We fabricated a back-drivable terminal device that could be used by amputees and non-amputees alike and drove aperture (or grip force, when a stiff object was in its grasp) in proportion to a myoelectric signal drawn from a single muscle site in the forearm. In randomly ordered trials, we assessed the performance of N=10 participants (7 non-amputee, 3 amputee) attempting to grasp and lift an object using the terminal device under three feedback conditions (no feedback, vibrotactile feedback, and joint torque feedback), and two object weights that were indiscernible by vision. Results Both non-amputee and amputee participants scaled their grip force according to the object weight. Our results showed only minor differences in grip force, grip/load force coordination, and slip as a function of sensory feedback condition, though the grip force at the point of lift-off for the heavier object was significantly greater for amputee participants in the presence of joint torque feedback. An examination of grip/load force phase plots revealed that our amputee participants used larger safety margins and demonstrated less coordination than our non-amputee participants. Conclusions Our results suggest that a backdrivable terminal device may hold advantages over non-backdrivable devices by allowing grip/load force coordination consistent with behaviors observed in the natural limb. Likewise, the inconclusive effect of referred haptic feedback on grasp and lift performance suggests the need for additional testing that includes adequate training for participants.http://deepblue.lib.umich.edu/bitstream/2027.42/116041/1/12984_2015_Article_98.pd

    Haptic wearables as sensory replacement, sensory augmentation and trainer - a review

    Get PDF
    Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful electronics have enabled the recent development of wearable systems aimed to improve function for individuals with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn devices that interact with skin directly or through clothing and can be used in natural environments outside a laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This review found that wearable haptic devices improved function for a variety of clinical applications including: rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and biomechanical compliance for long-term usage

    Sensory Integration of Electrotactile Stimulation as Supplementary Feedback for Human-Machine Interface

    Get PDF

    A Novel Skin-Stretch Haptic Device for Intuitive Control of Robotic Prostheses and Avatars

    Get PDF
    Without proprioception, i.e., the intrinsic capability of a body to perceive its own limb position, completing daily life activities would require constant visual attention and it would be challenging or even impossible. This situation is similar to the one experienced after limb amputation and in robotic tele-operation, where the natural sensory-motor loop is broken. While some promising solutions based on skin stretch sensory substitution have been proposed to restore tactile properties in these conditions, there is still room for enhancing the intuitiveness of stimulus delivery and integration of haptic feedback devices within user's body. To contribute to this goal, here, we propose a wearable device based on skin stretch stimulation, the Stretch-Pro, which can provide proprioceptive information on artificial hand aperture. This system can be suitably integrated in a prosthetic socket or can be easily worn by a user controlling remote robots. The system can imitate the stretching of the skin that would naturally occur on the intact limb, when it is used to accomplish motor tasks. Two versions of the system are presented, with one and two actuators, respectively, which deliver the stretch stimulus in different ways. Experiments with able-bodied participants and a preliminary test with one prosthesis user are reported. Results suggest that Stretch-Pro could be a viable solution to convey proprioceptive cues to upper limb prosthesis users, opening promising perspectives for tele-robotics applications

    Haptic Sensory Feedback for Improved Interface to Smart Prosthetics.

    Full text link
    Grip force feedback is not available in modern myoelectric upper-limb prostheses, yet its benefits are well known in object manipulation tasks performed through cable-driven body-powered prostheses. To evaluate the efficacy of grip force feedback in a myoelectric prosthesis, direct head-to-head comparisons should be made with body-powered prostheses, as well as with proposed designs that provide grip force feedback through haptic displays such as vibrotactile arrays. Direct comparisons, however, are difficult because myoelectric control for a trans-radial amputee uses residual muscles in the forearm, body-power generally refers interaction to the shoulder, and haptic displays often involve additional information encoding transformations. Currently, no unifying theory exists to cover both information encoding as well as the body part used for control or display. The work developed in this dissertation presents a systematic hypothesis-driven approach to evaluating both information encoding and body part used in the display of grip force feedback. Drawing upon principles from psychophysics, teleoperation, and sensory substitution, we use a series of human subject experiments to quantify the value of grip force feedback for an amputee wearing a trans-radial myoelectric prosthesis. Our findings demonstrate that both able-bodied individuals and amputees scale and coordinate their grip force for the anticipated weight of an object, that control and grip force feedback should be located on the same body site to improve stiffness recognition, and that grip force feedback is more useful than vision feedback in stiffness recognition through a prosthesis.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/108792/1/jdelaine_1.pd

    Novel Bidirectional Body - Machine Interface to Control Upper Limb Prosthesis

    Get PDF
    Objective. The journey of a bionic prosthetic user is characterized by the opportunities and limitations involved in adopting a device (the prosthesis) that should enable activities of daily living (ADL). Within this context, experiencing a bionic hand as a functional (and, possibly, embodied) limb constitutes the premise for mitigating the risk of its abandonment through the continuous use of the device. To achieve such a result, different aspects must be considered for making the artificial limb an effective support for carrying out ADLs. Among them, intuitive and robust control is fundamental to improving amputees’ quality of life using upper limb prostheses. Still, as artificial proprioception is essential to perceive the prosthesis movement without constant visual attention, a good control framework may not be enough to restore practical functionality to the limb. To overcome this, bidirectional communication between the user and the prosthesis has been recently introduced and is a requirement of utmost importance in developing prosthetic hands. Indeed, closing the control loop between the user and a prosthesis by providing artificial sensory feedback is a fundamental step towards the complete restoration of the lost sensory-motor functions. Within my PhD work, I proposed the development of a more controllable and sensitive human-like hand prosthesis, i.e., the Hannes prosthetic hand, to improve its usability and effectiveness. Approach. To achieve the objectives of this thesis work, I developed a modular and scalable software and firmware architecture to control the Hannes prosthetic multi-Degree of Freedom (DoF) system and to fit all users’ needs (hand aperture, wrist rotation, and wrist flexion in different combinations). On top of this, I developed several Pattern Recognition (PR) algorithms to translate electromyographic (EMG) activity into complex movements. However, stability and repeatability were still unmet requirements in multi-DoF upper limb systems; hence, I started by investigating different strategies to produce a more robust control. To do this, EMG signals were collected from trans-radial amputees using an array of up to six sensors placed over the skin. Secondly, I developed a vibrotactile system to implement haptic feedback to restore proprioception and create a bidirectional connection between the user and the prosthesis. Similarly, I implemented an object stiffness detection to restore tactile sensation able to connect the user with the external word. This closed-loop control between EMG and vibration feedback is essential to implementing a Bidirectional Body - Machine Interface to impact amputees’ daily life strongly. For each of these three activities: (i) implementation of robust pattern recognition control algorithms, (ii) restoration of proprioception, and (iii) restoration of the feeling of the grasped object's stiffness, I performed a study where data from healthy subjects and amputees was collected, in order to demonstrate the efficacy and usability of my implementations. In each study, I evaluated both the algorithms and the subjects’ ability to use the prosthesis by means of the F1Score parameter (offline) and the Target Achievement Control test-TAC (online). With this test, I analyzed the error rate, path efficiency, and time efficiency in completing different tasks. Main results. Among the several tested methods for Pattern Recognition, the Non-Linear Logistic Regression (NLR) resulted to be the best algorithm in terms of F1Score (99%, robustness), whereas the minimum number of electrodes needed for its functioning was determined to be 4 in the conducted offline analyses. Further, I demonstrated that its low computational burden allowed its implementation and integration on a microcontroller running at a sampling frequency of 300Hz (efficiency). Finally, the online implementation allowed the subject to simultaneously control the Hannes prosthesis DoFs, in a bioinspired and human-like way. In addition, I performed further tests with the same NLR-based control by endowing it with closed-loop proprioceptive feedback. In this scenario, the results achieved during the TAC test obtained an error rate of 15% and a path efficiency of 60% in experiments where no sources of information were available (no visual and no audio feedback). Such results demonstrated an improvement in the controllability of the system with an impact on user experience. Significance. The obtained results confirmed the hypothesis of improving robustness and efficiency of a prosthetic control thanks to of the implemented closed-loop approach. The bidirectional communication between the user and the prosthesis is capable to restore the loss of sensory functionality, with promising implications on direct translation in the clinical practice
    • …
    corecore