932 research outputs found

    High-performance control of dual-inertia servo-drive systems using low-cost integrated SAW torque transducers

    Get PDF
    Abstract—This paper provides a systematic comparative study of compensation schemes for the coordinated motion control of two-inertia mechanical systems. Specifically, classical proportional–integral (PI), proportional–integral–derivative (PID), and resonance ratio control (RRC) are considered, with an enhanced structure based on RRC, termed RRC+, being proposed. Motor-side and load-side dynamics for each control structure are identified, with the “integral of time multiplied by absolute error” performance index being employed as a benchmark metric. PID and RRC control schemes are shown to be identical from a closed-loop perspective, albeit employing different feedback sensing mechanisms. A qualitative study of the practical effects of employing each methodology shows that RRC-type structures provide preferred solutions if low-cost high-performance torque transducers can be employed, for instance, those based on surface acoustic wave tecnologies. Moreover, the extra degree of freedom afforded by both PID and RRC, as compared with the basic PI, is shown to be sufficient to simultaneously induce optimal closed-loop performance and independent selection of virtual inertia ratio. Furthermore, the proposed RRC+ scheme is subsequently shown to additionally facilitate independent assignment of closed-loop bandwidth. Summary attributes of the investigation are validated by both simulation studies and by realization of the methodologies for control of a custom-designed two-inertia system

    A unified approach to engine cylinder pressure reconstruction using time-delay neural networks with crank kinematics or block vibration measurements

    Get PDF
    Closed-loop combustion control (CLCC) in gasoline engines can improve efficiency, calibration effort, and performance using different fuels. Knowledge of in-cylinder pressures is a key requirement for CLCC. Adaptive cylinder pressure reconstruction offers a realistic alternative to direct sensing, which is otherwise necessary as legislation requires continued reductions in CO2 and exhaust emissions. Direct sensing however is expensive and may not prove adequately robust. A new approach is developed for in-cylinder pressure reconstruction on gasoline engines. The approach uses Time-Delay feed-forward Artificial Neural Networks trained with the standard Levenberg-Marquardt algorithm. The same approach can be applied to reconstruction via measured crank kinematics obtained from a shaft encoder, or measured engine cylinder block vibrations obtained from a production knock sensor. The basis of the procedure is initially justified by examination of the information content within measured data, which is considered to be equally important as the network architecture and training methodology. Key hypotheses are constructed and tested using data taken from a 3-cylinder (DISI) engine to reveal the influence of the data information content on reconstruction potential. The findings of these hypotheses tests are then used to develop the methodology. The approach is tested by reconstructing cylinder pressure across a wide range of steady-state engine operation using both measured crank kinematics and block accelerations. The results obtained show a very marked improvement over previously published reconstruction accuracy for both crank kinematics and cylinder block vibration based reconstruction using measurements obtained from a multi-cylinder engine. The paper shows that by careful processing of measured engine data, a standard neural network architecture and a standard training algorithm can be used to very accurately reconstruct engine cylinder pressure with high levels of robustness and efficiency

    Harjattoman tasavirtamoottorin arviointi opto-mekaanisessa paikkasäätösovelluksessa

    Get PDF
    This thesis evaluates the applicability of a micro-sized brushless direct current (DC) mo- tor in an opto-mechanical positioning application. Brushless DC motors are electronically commutated motors that use permanent magnets to produce the airgap magnetic field. The motor is powered through an inverter or switching power supply which produces an AC electric current to drive each phase of the motor. Optimal current waveforms are determined by the motor controller based on the desired torque, speed or position requirements. The benefits of a brushless motor over conventional brushed DC motors are a high power to weight ratio, low noise and a long operating life. The purpose of this thesis is to find out the performance potential of such motors and determine methods to achieve it. Firstly, a motor model and an exact motor classification is presented. A literature review is made to discuss state of the art control methods and hardware configurations for dynamic position control. Based on the literature review, a control scheme with field-oriented control based torque control and cascaded PI controlled speed and position loops was selected for further evaluation. Experimental positioning tests were executed for two motors with different power transmission setups. Tests were performed with both, a hardware and software implemented, motor controllers. Results show promising performance. It was shown that the required acceleration is feasible with both, geared and direct drive, transmissions. Field-oriented control was shown as a well performing method to control torque but special caution was needed to implement a reliable position sensing solution in a small size as the control algorithm is intolerant for inaccurate and noisy position data. The conventional PI based position controller was effective in cases with no feedback related harmonics or motor related torque ripple but was not capable in handling ripple caused by a non-ideal system. Quality variances were seen between motors which were originated from mechanical defects and non-idealities in the stator structure. Further research is needed to achieve a better settling performance through filtering undesired feedback harmonics, better tuning and thus minimizing undesired vibrations.Tämän diplomityön tarkoituksena on arvioida pienikokoisen harjattoman tasavirtamoottorin soveltuvuutta opto-mekaaniseen paikkasäätösovellukseen. Harjattomat tasavirtamoottorit ovat elektronisesti ohjattuja moottoreita, joissa ilmavälin magneettivuo luodaan kestomagneeteilla. Moottorille syötetään virtaa taajuusmuuttajalta, joka muodostaa halutunlaisen vaihtovirran jokaiselle moottorin vaiheelle. Syötettävää virtaa ohjataan moottorinohjaimelta määritettyjen vääntö-, nopeus- ja paikkavaatimusten perusteella. Harjattoman DC-moottorin edut verrattuna perinteiseen harjalliseen DC-moottoriin ovat hyvä teho-painosuhde, hiljainen käyntiääni ja pitkä käyttöikä. Diplomityön tavoitteena on kartoittaa kyseisen moottorityypin suorituskyky paikkasäädössä ja tutkia keinoja saavuttaa haluttu taso. Alan tutkimuksessa ja kirjallisuudessa tunnettuja suorituskykyisiä säätömenetelmiä ja laite- sekä komponenttikokoonpanoja on koostettu kirjallisuuskatsauksessa. Tämän perusteella kokeellisiin testeihin valittiin säätöarkkitehtuuri vektorisäätöön perustuvalla virransäädöllä sekä PI-pohjaisilla nopeus- ja paikkasäätimillä. Kokeellisilla paikoitustesteillä arvioitiin kahden moottorin suorituskykyä erilaisilla voimansiirtovaihtoehdoilla. Testit suoritettiin sekä ohjelmistopohjaisella että sovelluskohtaiseen mikropiiriin toteutetulla laitepohjaisella säätimellä. Tulokset osoittavat että vaaditun kiihtyvyyden saavuttaminen on mahdollista sekä vaihteellisella että suoravetoisella voimansiirrolla. Vektorisäätö osoittautui suorituskykyiseksi virransäätömenetelmäksi, mutta moottorin asentomittauksen luotettava toteutus vaati erityishuomiota, sillä vektorisäätöalgoritmi on herkkä paikkadatan tarkkuudelle. PI-säätimillä toteutettu paikkasäätö osoittautui toimivaksi, mutta herkäksi moottorin epäideaalisuuksille sekä häiriöille takaisinkytkennässä. Moottoreiden välillä havaittiin laatueroja mekaanisissa toleransseissa ja staattorin rakenteessa. Lopullisen asettumisajan saavuttaminen vaatii lisätutkimusta. Erityishuomiota on kiinnitettävä harmonisten komponenttien suodattamiseen sekä systeemin säätöön, jotta ei-toivotut värinät saadaan minimoitua

    Modeling and Direct Adaptive Robust Control of Flexible Cable-Actuated Systems

    Get PDF
    Cable-actuated systems provide an effective method for precise motion transmission over various distances in many robotic systems. In general, the use of cables has many potential advantages such as high-speed manipulation, larger payloads, larger range of motion, access to remote locations and applications in hazardous environments. However, cable flexibility inevitably causes vibrations and poses a concern in high-bandwidth, high-precision applications

    12th International Conference on Vibrations in Rotating Machinery

    Get PDF
    Since 1976, the Vibrations in Rotating Machinery conferences have successfully brought industry and academia together to advance state-of-the-art research in dynamics of rotating machinery. 12th International Conference on Vibrations in Rotating Machinery contains contributions presented at the 12th edition of the conference, from industrial and academic experts from different countries. The book discusses the challenges in rotor-dynamics, rub, whirl, instability and more. The topics addressed include: - Active, smart vibration control - Rotor balancing, dynamics, and smart rotors - Bearings and seals - Noise vibration and harshness - Active and passive damping - Applications: wind turbines, steam turbines, gas turbines, compressors - Joints and couplings - Challenging performance boundaries of rotating machines - High power density machines - Electrical machines for aerospace - Management of extreme events - Active machines - Electric supercharging - Blades and bladed assemblies (forced response, flutter, mistuning) - Fault detection and condition monitoring - Rub, whirl and instability - Torsional vibration Providing the latest research and useful guidance, 12th International Conference on Vibrations in Rotating Machinery aims at those from industry or academia that are involved in transport, power, process, medical engineering, manufacturing or construction

    Compliant aerial manipulation.

    Get PDF
    The aerial manipulation is a research field which proposes the integration of robotic manipulators in aerial platforms, typically multirotors – widely known as “drones” – or autonomous helicopters. The development of this technology is motivated by the convenience to reduce the time, cost and risk associated to the execution of certain operations or tasks in high altitude areas or difficult access workspaces. Some illustrative application examples are the detection and insulation of leaks in pipe structures in chemical plants, repairing the corrosion in the blades of wind turbines, the maintenance of power lines, or the installation and retrieval of sensor devices in polluted areas. Although nowadays it is possible to find a wide variety of commercial multirotor platforms with payloads from a few gramps up to several kilograms, and flight times around thirty minutes, the development of an aerial manipulator is still a technological challenge due to the strong requirements relative to the design of the manipulator in terms of very low weight, low inertia, dexterity, mechanical robustness and control. The main contribution of this thesis is the design, development and experimental validation of several prototypes of lightweight (<2 kg) and compliant manipulators to be integrated in multirotor platforms, including human-size dual arm systems, compliant joint arms equipped with human-like finger modules for grasping, and long reach aerial manipulators. Since it is expected that the aerial manipulator is capable to execute inspection and maintenance tasks in a similar way a human operator would do, this thesis proposes a bioinspired design approach, trying to replicate the human arm in terms of size, kinematics, mass distribution, and compliance. This last feature is actually one of the key concepts developed and exploited in this work. Introducing a flexible element such as springs or elastomers between the servos and the links extends the capabilities of the manipulator, allowing the estimation and control of the torque/force, the detection of impacts and overloads, or the localization of obstacles by contact. It also improves safety and efficiency of the manipulator, especially during the operation on flight or in grabbing situations, where the impacts and contact forces may damage the manipulator or destabilize the aerial platform. Unlike most industrial manipulators, where force-torque control is possible at control rates above 1 kHz, the servo actuators typically employed in the development of aerial manipulators present important technological limitations: no torque feedback nor control, only position (and in some models, speed) references, low update rates (<100 Hz), and communication delays. However, these devices are still the best solution due to their high torque to weight ratio, low cost, compact design, and easy assembly and integration. In order to cope with these limitations, the compliant joint arms presented here estimate and control the wrenches from the deflection of the spring-lever transmission mechanism introduced in the joints, measured at joint level with encoders or potentiometers, or in the Cartesian space employing vision sensors. Note that in the developed prototypes, the maximum joint deflection is around 25 degrees, which corresponds to a deviation in the position of the end effector around 20 cm for a human-size arm. The capabilities and functionalities of the manipulators have been evaluated in fixed base test-bench firstly, and then in outdoor flight tests, integrating the arms in different commercial hexarotor platforms. Frequency characterization, position/force/impedance control, bimanual grasping, arm teleoperation, payload mass estimation, or contact-based obstacle localization are some of the experiments presented in this thesis that validate the developed prototypes.La manipulación aérea es un campo de investigación que propone la integración de manipuladores robóticos in plataformas aéreas, típicamente multirotores – comúnmente conocidos como “drones” – o helicópteros autónomos. El desarrollo de esta tecnología está motivada por la conveniencia de reducir el tiempo, coste y riesgo asociado a la ejecución de ciertas operaciones o tareas en áreas de gran altura o espacios de trabajo de difícil acceso. Algunos ejemplos ilustrativos de aplicaciones son la detección y aislamiento de fugas en estructura de tuberías en plantas químicas, la reparación de la corrosión en las palas de aerogeneradores, el mantenimiento de líneas eléctricas, o la instalación y recuperación de sensores en zonas contaminadas. Aunque hoy en día es posible encontrar una amplia variedad de plataformas multirotor comerciales con cargas de pago desde unos pocos gramos hasta varios kilogramos, y tiempo de vuelo entorno a treinta minutos, el desarrollo de los manipuladores aéreos es todavía un desafío tecnológico debido a los exigentes requisitos relativos al diseño del manipulador en términos de muy bajo peso, baja inercia, destreza, robustez mecánica y control. La contribución principal de esta tesis es el diseño, desarrollo y validación experimental de varios prototipos de manipuladores de bajo peso (<2 kg) con capacidad de acomodación (“compliant”) para su integración en plataformas aéreas multirotor, incluyendo sistemas bi-brazo de tamaño humano, brazos robóticos de articulaciones flexibles con dedos antropomórficos para agarre, y manipuladores aéreos de largo alcance. Puesto que se prevé que el manipulador aéreo sea capaz de ejecutar tareas de inspección y mantenimiento de forma similar a como lo haría un operador humano, esta tesis propone un enfoque de diseño bio-inspirado, tratando de replicar el brazo humano en cuanto a tamaño, cinemática, distribución de masas y flexibilidad. Esta característica es de hecho uno de los conceptos clave desarrollados y utilizados en este trabajo. Al introducir un elemento elástico como los muelles o elastómeros entre el los actuadores y los enlaces se aumenta las capacidades del manipulador, permitiendo la estimación y control de las fuerzas y pares, la detección de impactos y sobrecargas, o la localización de obstáculos por contacto. Además mejora la seguridad y eficiencia del manipulador, especialmente durante las operaciones en vuelo, donde los impactos y fuerzas de contacto pueden dañar el manipulador o desestabilizar la plataforma aérea. A diferencia de la mayoría de manipuladores industriales, donde el control de fuerzas y pares es posible a tasas por encima de 1 kHz, los servo motores típicamente utilizados en el desarrollo de manipuladores aéreos presentan importantes limitaciones tecnológicas: no hay realimentación ni control de torque, sólo admiten referencias de posición (o bien de velocidad), y presentan retrasos de comunicación. Sin embargo, estos dispositivos son todavía la mejor solución debido al alto ratio de torque a peso, por su bajo peso, diseño compacto y facilidad de ensamblado e integración. Para suplir estas limitaciones, los brazos robóticos flexibles presentados aquí permiten estimar y controlar las fuerzas a partir de la deflexión del mecanismo de muelle-palanca introducido en las articulaciones, medida a nivel articular mediante potenciómetros o codificadores, o en espacio Cartesiano mediante sensores de visión. Tómese como referencia que en los prototipos desarrollados la máxima deflexión articular es de unos 25 grados, lo que corresponde a una desviación de posición en torno a 20 cm en el efector final para un brazo de tamaño humano. Las capacidades y funcionalidades de estos manipuladores se han evaluado en base fija primero, y luego en vuelos en exteriores, integrando los brazos en diferentes plataformas hexartor comerciales. Caracterización frecuencial, control de posición/fuerza/impedancia, agarre bimanual, teleoperación de brazos, estimación de carga, o la localización de obstáculos mediante contacto son algunos de los experimentos presentados en esta tesis para validar los prototipos desarrollados por el auto

    Robot Impedance Control and Passivity Analysis with Inner Torque and Velocity Feedback Loops

    Full text link
    Impedance control is a well-established technique to control interaction forces in robotics. However, real implementations of impedance control with an inner loop may suffer from several limitations. Although common practice in designing nested control systems is to maximize the bandwidth of the inner loop to improve tracking performance, it may not be the most suitable approach when a certain range of impedance parameters has to be rendered. In particular, it turns out that the viable range of stable stiffness and damping values can be strongly affected by the bandwidth of the inner control loops (e.g. a torque loop) as well as by the filtering and sampling frequency. This paper provides an extensive analysis on how these aspects influence the stability region of impedance parameters as well as the passivity of the system. This will be supported by both simulations and experimental data. Moreover, a methodology for designing joint impedance controllers based on an inner torque loop and a positive velocity feedback loop will be presented. The goal of the velocity feedback is to increase (given the constraints to preserve stability) the bandwidth of the torque loop without the need of a complex controller.Comment: 14 pages in Control Theory and Technology (2016

    Precision Control of High Speed Ball Screw Drives

    Get PDF
    Industrial demands for higher productivity rates and more stringent part tolerances require faster production machines that can produce, assemble, or manipulate parts at higher speeds and with better accuracy than ever before. In a majority of production machines, such as machine tools, ball screw drives are used as the primary motion delivery mechanism due to their reasonably high accuracy, high mechanical stiffness, and low cost. This brings the motivation for the research in this thesis, which has been to develop new control techniques that can achieve high bandwidths near the structural frequencies of ball screw drives, and also compensate for various imperfections in their motion delivery, so that better tool positioning accuracy can be achieved at high speeds. A precision ball screw drive has been designed and built for this study. Detailed dynamic modeling and identification has been performed, considering rigid body dynamics, nonlinear friction, torque ripples, axial and torsional vibrations, lead errors, and elastic deformations. Adaptive Sliding Mode Controller (ASMC) is designed based on the rigid body dynamics and notch filters are used to attenuate the effect of structural resonances. Feedforward friction compensation is also added to improve the tracking accuracy at velocity reversals. A bandwidth of 223 Hz was achieved while controlling the rotational motion of the ball screw, leading to a servo error equivalent to 1.6 um of translational motion. The motor and mechanical torque ripples were also modeled and compensated in the control law. This improved the motion smoothness and accuracy, especially at low speeds and low control bandwidths. The performance improvement was also noticeable when higher speeds and control bandwidths were used. By adding on the torque ripple compensation, the rotational tracking accuracy was improved to 0.95 um while executing feed motions with 1 m/sec velocity and 1 g acceleration. As one of the main contributions in this thesis, the dynamics of the 1st axial mode (at 132 Hz) were actively compensated using ASMC, which resulted in a command tracking bandwidth of 208 Hz. The mode compensating ASMC (MC-ASMC) was also shown to improve the dynamic stiffness of the drive system, around the axial resonance, by injecting additional damping at this mode. After compensating for the lead errors as well, a translational tracking accuracy of 2.6 um was realized while executing 1 m/sec feed motions with 0.5 g acceleration transients. In terms of bandwidth, speed, and accuracy, these results surpass the performance of most ball screw driven machine tools by 4-5 times. As the second main contribution in this thesis, the elastic deformations (ED) of the ball screw drive were modeled and compensated using a robust strategy. The robustness originates from using the real-time feedback control signal to monitor the effect of any potential perturbations on the load side, such as mass variations or cutting forces, which can lead to additional elastic deformations. In experimental results, it is shown that this compensation scheme can accurately estimate and correct for the elastic deformation, even when there is 130% variation in the translating table mass. The ED compensation strategy has resulted in 4.1 um of translational accuracy while executing at 1 m/sec feed motion with 0.5 g acceleration transients, without using a linear encoder. This result is especially significant for low-cost CNC (Computer Numerically Controlled) machine tools that have only rotary encoders on their motors. Such machines can benefit from the significant accuracy improvement provided by this compensation scheme, without the need for an additional linear encoder

    Fusion of low-cost and light-weight sensor system for mobile flexible manipulator

    Get PDF
    There is a need for non-industrial robots such as in homecare and eldercare. Light-weight mobile robots preferred as compared to conventional fixed based robots as the former is safe, portable, convenient and economical to implement. Sensor system for light-weight mobile flexible manipulator is studied in this research. A mobile flexible link manipulator (MFLM) contributes to high amount of vibrations at the tip, giving rise to inaccurate position estimations. In a control system, there inevitably exists a lag between the sensor feedback and the controller. Consequently, it contributed to instable control of the MFLM. Hence, there it is a need to predict the tip trajectory of the MFLM. Fusion of low cost sensors is studied to enhance prediction accuracy at the MFLM’s tip. A digital camera and an accelerometer are used predict tip of the MFLM. The main disadvantage of camera is the delayed feedback due to the slow data rate and long processing time, while accelerometer composes cumulative errors. Wheel encoder and webcam are used for position estimation of the mobile platform. The strengths and limitations of each sensor were compared. To solve the above problem, model based predictive sensor systems have been investigated for used on the mobile flexible link manipulator using the selected sensors. Mathematical models were being developed for modeling the reaction of the mobile platform and flexible manipulator when subjected to a series of input voltages and loads. The model-based Kalman filter fusion prediction algorithm was developed, which gave reasonability good predictions of the vibrations of the tip of flexible manipulator on the mobile platform. To facilitate evaluation of the novel predictive system, a mobile platform was fabricated, where the flexible manipulator and the sensors are mounted onto the platform. Straight path motions were performed for the experimental tests. The results showed that predictive algorithm with modelled input to the Extended Kalman filter have best prediction to the tip vibration of the MFLM
    corecore