50 research outputs found

    Experimental set-up for investigation of fault diagnosis of a centrifugal pump

    Get PDF
    Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated

    A new method of vibration analysis for the diagnosis of impeller in a centrifugal pump

    Get PDF
    Centrifugal pumps are widely used in many important industries such as power generation plants, chemical processes and petroleum refiners. The condition monitoring of centrifugal pumps is highly regarded by many researchers and users to minimize unexpected break-downs. Impellers are the core parts of pumps but often appear early damages due to flow cav-itation and erosion. This paper investigates a new approach to monitoring the conditions of impellers using surface vibration with advanced signal analysis. As overall vibration respons-es contain high level of broadband noises due to cavities and turbulences, noise reduction is critical to develop reliable and effective features. However, considering the modulation effect between rotating shaft and blade passing components, a modulation signal bispectrum (MSB) method is employed to extract these deterministic characteristics of modulations, which is different from previous researches in that broadband random sources are often used. Experi-mental results show that the diagnostic features developed by MSB allow impellers with inlet vane damages and exit vane faults to be identified under different operating conditions

    A Study on Comparison of Classification Algorithms for Pump Failure Prediction

    Get PDF
    The reliability of pumps can be compromised by faults, impacting their functionality. Detecting these faults is crucial, and many studies have utilized motor current signals for this purpose. However, as pumps are rotational equipped, vibrations also play a vital role in fault identification. Rising pump failures have led to increased maintenance costs and unavailability, emphasizing the need for cost-effective and dependable machinery operation. This study addresses the imperative challenge of defect classification through the lens of predictive modeling. With a problem statement centered on achieving accurate and efficient identification of defects, this study’s objective is to evaluate the performance of five distinct algorithms: Fine Decision Tree, Medium Decision Tree, Bagged Trees (Ensemble), RUS-Boosted Trees, and Boosted Trees. Leveraging a comprehensive dataset, the study meticulously trained and tested each model, analyzing training accuracy, test accuracy, and Area Under the Curve (AUC) metrics. The results showcase the supremacy of the Fine Decision Tree (91.2% training accuracy, 74% test accuracy, AUC 0.80), the robustness of the Ensemble approach (Bagged Trees with 94.9% training accuracy, 99.9% test accuracy, and AUC 1.00), and the competitiveness of Boosted Trees (89.4% training accuracy, 72.2% test accuracy, AUC 0.79) in defect classification. Notably, Support Vector Machines (SVM), Artificial Neural Networks (ANN), and k-Nearest Neighbors (KNN) exhibited comparatively lower performance. Our study contributes valuable insights into the efficacy of these algorithms, guiding practitioners toward optimal model selection for defect classification scenarios. This research lays a foundation for enhanced decision-making in quality control and predictive maintenance, fostering advancements in the realm of defect prediction and classification

    Deep Learning for Enhanced Fault Diagnosis of Monoblock Centrifugal Pumps: Spectrogram-Based Analysis

    Get PDF
    Abstract The reliable operation of monoblock centrifugal pumps (MCP) is crucial in various industrial applications. Achieving optimal performance and minimizing costly downtime requires effectively detecting and diagnosing faults in critical pump components. This study proposes an innovative approach that leverages deep transfer learning techniques. An accelerometer was adopted to capture vibration signals emitted by the pump. These signals are then converted into spectrogram images which serve as the input for a sophisticated classification system based on deep learning. This enables the accurate identification and diagnosis of pump faults. To evaluate the effectiveness of the proposed methodology, 15 pre-trained networks including ResNet-50, InceptionV3, GoogLeNet, DenseNet-201, ShuffleNet, VGG-19, MobileNet-v2, InceptionResNetV2, VGG-16, NasNetmobile, EfficientNetb0, AlexNet, ResNet-18, Xception, ResNet101 and ResNet-18 were employed. The experimental results demonstrate the efficacy of the proposed approach with AlexNet exhibiting the highest level of accuracy among the pre-trained networks. Additionally, a meticulous evaluation of the execution time of the classification process was performed. AlexNet achieved 100.00% accuracy with an impressive execution (training) time of 17 s. This research provides invaluable insights into applying deep transfer learning for fault detection and diagnosis in MCP. Using pre-trained networks offers an efficient and precise solution for this task. The findings of this study have the potential to significantly enhance the reliability and maintenance practices of MCP in various industrial settings

    Fault Diagnosis of Centrifugal Pumps based on the Intrinsic Time-scale Decomposition of Motor Current Signals

    Get PDF
    Centrifugal pumps are widely used in various manufacturing processes, such as power plants, and chemistry. However, pump problems are responsible for large amount of the maintenance budget. An early detection of such problems would provide timely information to take appropriate preventive actions. This paper investigates the application of Machine Learning Techniques (MLT) in monitoring and diagnosing fault in centrifugal pump. In particular, the focus is on utilising motor current signals since they can be measured remotely for easy and low-cost deployment. Moreover, because the signals are usually produced by a nonlinear process and contaminated by various noises, it is difficult to obtain accurate diagnostic features with conventional signal processing methods such as Fourier spectrum and wavelet transforms as they rely heavily on standard basis functions and often capture limited nonlinear weak fault signatures. Therefore, a data-driven method: Intrinsic Time-scale Decomposition (ITD) is adopted in this study to process motor current signals from different pump fault cases. The results indicate that the proposed ITD technique is an effective method for extracting useful diagnostic information, leading to accurate diagnosis by combining the RMS values of the first Proper Rotation Component (PRC) with the raw signal RMS values

    Vibration-based classification of centrifugal pumps using support vector machine and discrete wavelet transform

    Get PDF
    Due to the quick advancement of technology, application of different methods is highly required to maintain the high quality of production and health assessment of production lines. Hence, condition monitoring is widely used in the industry as an efficient approach. The purpose of the present study was to classify faults in centrifugal pumps using the vibration signal analysis and support vector machine (SVM) method. Vibration signals were decomposed in three levels by Daubechies wavelets, and a total of 44 descriptive statistical features were extracted from detail coefficients and approximation coefficients of the wavelets. In order to find the best model for fault classification of centrifugal pumps, parameters such as penalty, degree of polynomial, and width of the Gaussian radial basis function kernel (RBF kernel) were investigated. The classification results using the SVM method indicated that the maximum classification accuracy was 96.67 percent, which was obtained at an RBF kernel width of 0.1 and a penalty parameter value of 1

    Centrifugal pump fault detection based on SWT and SVM

    Get PDF
    Centrifugal pumps, like other rotating equipment, produce vibration signals during operation. Vibration signals often contain pump state information. Therefore, we can obtain pump state information by using appropriate signal processing methods. Synchrosqueezing wavelet transform (SWT) is a new time-frequency analysis technology. It is an algorithm for rebuilding time-frequency signals, which is similar to the empirical mode decomposition method. It can improve the time-frequency resolution of the signal compared with wavelet transform. In this paper, the SWT is used to analyze the vibration signal of centrifugal pump and extract characteristics. The data shows that the SWT can effectively extract the information of signal in time domain and frequency domain. Then we use the Support Vector Machine (SVM) to classify the features and realize the fault diagnosis of centrifugal pump. The result proves that the fault diagnosis method based on the SWT and SVM
    corecore