1,335 research outputs found

    Development of piezoelectric harvesters with integrated trimming devices

    Get PDF
    Piezoelectric cantilever harvesters have a large power output at their natural frequency, but in some applications the frequency of ambient vibrations is different fromthe harvester\u2019s frequency and/or ambient vibrations are periodicwith some harmonic components. To copewith these operating conditions harvesters with integrated trimming devices (ITDs) are proposed. Some prototypes are developed with the aid of an analytical model and tested with an impulsive method. Results show that a small trimming device can lower the main resonance frequency of a piezoelectric harvester of the same extent as a larger tip mass and, moreover, it generates at high frequency a second resonance peak. A multi-physics numerical finite element (FE) model is developed for predicting the generated power and for performing a stress-strain analysis of harvesters with ITDs. The numerical model is validated on the basis of the experimental results. Several configurations of ITDs are conceived and studied. Numerical results show that the harvesters with ITDs are able to generate relevant power at two frequencies, owing to the particular shape of the modes of vibration. The stress in the harvesters with ITDs is smaller than the stress in the harvester with a tip mass trimmed to the same frequency

    Strategies for increasing the operating frequency range of vibration energy harvesters: a review

    No full text
    This paper reviews possible strategies to increase the operational frequency range of vibration-based micro-generators. Most vibration-based micro-generators are spring-mass-damper systems which generate maximum power when the resonant frequency of the generator matches the frequency of the ambient vibration. Any difference between these two frequencies can result in a significant decrease in generated power. This is a fundamental limitation of resonant vibration generators which restricts their capability in real applications. Possible solutions include the periodic tuning of the resonant frequency of the generator so that it matches the frequency of the ambient vibration at all times or widening the bandwidth of the generator. Periodic tuning can be achieved using mechanical or electrical methods. Bandwidth widening can be achieved using a generator array, a mechanical stopper, non-linear (e.g. magnetic) springs or bi-stable structures. Tuning methods can be classified into intermittent tuning (power is consumed periodically to tune the device) and continuous tuning (the tuning mechanism is continuously powered). This paper presents a comprehensive review of the principles and operating strategies for increasing the operating frequency range of vibration-based micro-generators presented in the literature to date. The advantages and disadvantages of each strategy are evaluated and conclusions are drawn regarding the relevant merits of each approach

    Modelling and optimisation of a bimorph piezoelectric cantilever beam in an energy harvesting application

    Get PDF
    Piezoelectric materials are excellent transducers in converting vibrational energy into electrical energy, and vibration-based piezoelectric generators are seen as an enabling technology for wireless sensor networks, especially in selfpowered devices. This paper proposes an alternative method for predicting the power output of a bimorph cantilever beam using a finite element method for both static and dynamic frequency analyses. Experiments are performed to validate the model and the simulation results. In addition, a novel approach is presented for optimising the structure of the bimorph cantilever beam, by which the power output is maximised and the structural volume is minimised simultaneously. Finally, the results of the optimised design are presented and compared with other designs

    Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation

    Get PDF
    The modern drive towards mobility and wireless devices is motivating intensive research in energy harvesting technologies. To reduce the battery burden on people, we propose the adoption of a frequency up-conversion strategy for a new piezoelectric wearable energy harvester. Frequency up-conversion increases efficiency because the piezoelectric devices are permitted to vibrate at resonance even if the input excitation occurs at much lower frequency. Mechanical plucking-based frequency up-conversion is obtained by deflecting the piezoelectric bimorph via a plectrum, then rapidly releasing it so that it can vibrate unhindered; during the following oscillatory cycles, part of the mechanical energy is converted into electrical energy. In order to guide the design of such a harvester, we have modelled with finite element methods the response and power generation of a piezoelectric bimorph while it is plucked. The model permits the analysis of the effects of the speed of deflection as well as the prediction of the energy produced and its dependence on the electrical load. An experimental rig has been set up to observe the response of the bimorph in the harvester. A PZT-5H bimorph was used for the experiments. Measurements of tip velocity, voltage output and energy dissipated across a resistor are reported. Comparisons of the experimental results with the model predictions are very successful and prove the validity of the model

    Piezoelectric vibration energy harvesting from airflow in HVAC (Heating Ventilation and Air Conditioning) systems

    Get PDF
    This study focuses on the design and wind tunnel testing of a high efficiency Energy Harvesting device, based on piezoelectric materials, with possible applications for the sustainability of smart buildings, structures and infrastructures. The development of the device was supported by ESA (the European Space Agency) under a program for the space technology transfer in the period 2014-2016. The EH device harvests the airflow inside Heating, Ventilation and Air Conditioning (HVAC) systems, using a piezoelectric component and an appropriate customizable aerodynamic appendix or fin that takes advantage of specific airflow phenomena (vortex shedding and galloping), and can be implemented for optimizing the energy consumption inside buildings. Focus is given on several relevant aspects of wind tunnel testing: different configurations for the piezoelectric bender (rectangular, cylindrical and T-shaped) are tested and compared, and the effective energy harvesting potential of a working prototype device is assessed

    On the discretization of a bistable cantilever beam with application to energy harvesting

    Get PDF
    A typical setup for energy harvesting is that of a cantilever beam with piezoceramics excited by ambient base vibrations. In order to get higher energy output for a wide range of excitation frequencies, often a nonlinearity is introduced by intention in that way, that two magnets are fixed close to the free tip of the beam. Depending on strength and position of the magnets, this can either result in a mono-, bi- or tristable system. In our study, we focus on a bistable system. Such systems have been investigated thoroughly in literature while in almost all cases the beam has been discretized by a single shape function, in general the first eigenshape of the linear beam with undeflected stable equilibrium position. There can be some doubts about the suitability of a discretization by a single shape function mainly due to two reasons. First: In case of stochastic broadband excitations a discretization, taking into consideration just the first vibration shape seems not to be reasonable. Second: as the undeflected position of the considered system is unstable and the system significantly nonlinear, the question arises, if using just one eigenshape of the linear beam is a suitable approximation of the operation shapes during excited oscillations even in the case of harmonic excitation. Are there other, e.g. amplitude dependent, possibilities and/or should multiple ansatz functions be considered instead? In this paper, we focus mainly on the second point. Therefore, a bistable cantilever beam with harmonic base excitation is considered and experimental investigations of operation shapes are performed using a high-speed camera. The observed operation shapes are expanded in a similar way as it is done in a theoretical analysis by a corresponding mixed Ritz ansatz. The results show the existence of distinct superharmonics (as one can expect for a nonlinear system) but additionally the necessity to use more than one shape function in the discretization, covering also the amplitude dependence of the observed operation shapes
    corecore