2,296 research outputs found

    Viability-Based Guaranteed Safe Robot Navigation

    Get PDF
    International audienceGuaranteeing safe, i.e. collision-free, motion for robotic systems is usually tackled in the Inevitable Collision State (ICS) framework. This paper explores the use of the more general Viability theory as an alternative when safe motion involves multiple motion constraints and not just collision avoidance. Central to Viability is the so-called viability kernel, i.e. the set of states of the robotic system for which there is at least one trajectory that satisfies the motion constraints forever. The paper presents an algorithm that computes off-line an approximation of the viability kernel that is both conservative and able to handle time-varying constraints such as moving obstacles. Then it demonstrates, for different robotic scenarios involving multiple motion constraints (collision avoidance, visibility, velocity), how to use the viability kernel computed off-line within an on-line reactive navigation scheme that can drive the robotic system without ever violating the motion constraints at hand

    Assistive Planning in Complex, Dynamic Environments: a Probabilistic Approach

    Full text link
    We explore the probabilistic foundations of shared control in complex dynamic environments. In order to do this, we formulate shared control as a random process and describe the joint distribution that governs its behavior. For tractability, we model the relationships between the operator, autonomy, and crowd as an undirected graphical model. Further, we introduce an interaction function between the operator and the robot, that we call "agreeability"; in combination with the methods developed in~\cite{trautman-ijrr-2015}, we extend a cooperative collision avoidance autonomy to shared control. We therefore quantify the notion of simultaneously optimizing over agreeability (between the operator and autonomy), and safety and efficiency in crowded environments. We show that for a particular form of interaction function between the autonomy and the operator, linear blending is recovered exactly. Additionally, to recover linear blending, unimodal restrictions must be placed on the models describing the operator and the autonomy. In turn, these restrictions raise questions about the flexibility and applicability of the linear blending framework. Additionally, we present an extension of linear blending called "operator biased linear trajectory blending" (which formalizes some recent approaches in linear blending such as~\cite{dragan-ijrr-2013}) and show that not only is this also a restrictive special case of our probabilistic approach, but more importantly, is statistically unsound, and thus, mathematically, unsuitable for implementation. Instead, we suggest a statistically principled approach that guarantees data is used in a consistent manner, and show how this alternative approach converges to the full probabilistic framework. We conclude by proving that, in general, linear blending is suboptimal with respect to the joint metric of agreeability, safety, and efficiency

    Safe Policy Synthesis in Multi-Agent POMDPs via Discrete-Time Barrier Functions

    Get PDF
    A multi-agent partially observable Markov decision process (MPOMDP) is a modeling paradigm used for high-level planning of heterogeneous autonomous agents subject to uncertainty and partial observation. Despite their modeling efficiency, MPOMDPs have not received significant attention in safety-critical settings. In this paper, we use barrier functions to design policies for MPOMDPs that ensure safety. Notably, our method does not rely on discretization of the belief space, or finite memory. To this end, we formulate sufficient and necessary conditions for the safety of a given set based on discrete-time barrier functions (DTBFs) and we demonstrate that our formulation also allows for Boolean compositions of DTBFs for representing more complicated safe sets. We show that the proposed method can be implemented online by a sequence of one-step greedy algorithms as a standalone safe controller or as a safety-filter given a nominal planning policy. We illustrate the efficiency of the proposed methodology based on DTBFs using a high-fidelity simulation of heterogeneous robots.Comment: 8 pages and 4 figure

    Navigation pour robot avec garantie de sécurité basée sur la théorie de la viabilité

    Get PDF
    Guaranteeing safe, i.e. collision-free, motion for robotic systems is usually tackled in the InevitableCollision State framework. This paper explores the use of the more general Viability theory as analternative when safe motion involves multiple motion constraints and not just collision avoidance. Centralto Viability is the so-called viability kernel, i.e. the set of states of the robotic system for which there isat least one trajectory that satisfies the motion constraints forever. The paper presents an algorithm thatcomputes off-line an approximation of the viability kernel that is both conservative and able to handletime-varying constraints such as moving obstacles. Then it demonstrates, for different robotic scenarios involvingmultiple motion constraints (collision avoidance, visibility, velocity), how to use the viability kernelcomputed off-line within an on-line reactive navigation scheme that can drive the robotic system withoutever violating the motion constraints at hand.La garantie de mouvement sans collision pour les systèmes robotiques est généralement abordéedans le cadre des Etats de Collision Inévitable. Cet article explore l’utilisation de la théorie plusgénérale de la Viabilité comme alternative lorsque le mouvement implique des contraintes de mouvementautres que l’évitement de collision. Le noyau de viabilité, i.e. l’ensemble des états du systèmerobotique pour lequel il existe au moins une trajectoire qui satisfait à jamais les contraintes de mouvement,est un élément central de la théorie de la viabilité. Cet article présente un algorithme qui calculehors ligne une approximation du noyau de viabilité qui est à la fois conservative et capable de gérer descontraintes dynamiques telles que des obstacles mobiles. Ensuite, il démontre, pour différents scénariosrobotiques impliquant plusieurs contraintes de mouvement (évitement de collision, visibilité, vitesse),comment utiliser le noyau de viabilité calculé hors ligne dans un schéma de navigation réactive en lignecapable de piloter le système robotique sans jamais violer les différentes contraintes de mouvement

    Towards a cloud‑based automated surveillance system using wireless technologies

    Get PDF
    Cloud Computing can bring multiple benefits for Smart Cities. It permits the easy creation of centralized knowledge bases, thus straightforwardly enabling that multiple embedded systems (such as sensor or control devices) can have a collaborative, shared intelligence. In addition to this, thanks to its vast computing power, complex tasks can be done over low-spec devices just by offloading computation to the cloud, with the additional advantage of saving energy. In this work, cloud’s capabilities are exploited to implement and test a cloud-based surveillance system. Using a shared, 3D symbolic world model, different devices have a complete knowledge of all the elements, people and intruders in a certain open area or inside a building. The implementation of a volumetric, 3D, object-oriented, cloud-based world model (including semantic information) is novel as far as we know. Very simple devices (orange Pi) can send RGBD streams (using kinect cameras) to the cloud, where all the processing is distributed and done thanks to its inherent scalability. A proof-of-concept experiment is done in this paper in a testing lab with multiple cameras connected to the cloud with 802.11ac wireless technology. Our results show that this kind of surveillance system is possible currently, and that trends indicate that it can be improved at a short term to produce high performance vigilance system using low-speed devices. In addition, this proof-of-concept claims that many interesting opportunities and challenges arise, for example, when mobile watch robots and fixed cameras would act as a team for carrying out complex collaborative surveillance strategies.Ministerio de Economía y Competitividad TEC2016-77785-PJunta de Andalucía P12-TIC-130
    • …
    corecore