14 research outputs found

    Implementation of a Scale Semi-Autonomous Platoon to Test Control Theory Attacks

    Get PDF
    With all the advancements in autonomous and connected cars, there is a developing body of research around the security and robustness of driving automation systems. Attacks and mitigations for said attacks have been explored, but almost always solely in software simulations. For this thesis, I led a team to build the foundation for an open source platoon of scale semi-autonomous vehicles. This work will enable future research into implementing theoretical attacks and mitigations. Our 1/10 scale car leverages an Nvidia Jetson, embedded microcontroller, and sensors. The Jetson manages the computer vision, networking, control logic, and overall system control; the embedded microcontroller directly controls the car. A lidar module is responsible for recording distance to the preceding car, and an inertial measurement unit records the velocity of the car itself. I wrote the software for the networking, interprocess, and serial communications, as well as the control logic and system control

    Error-Floors of the 802.3an LDPC Code for Noise Assisted Decoding

    Get PDF
    In digital communication, information is sent as bits, which is corrupted by the noise present in wired/wireless medium known as the channel. The Low Density Parity Check (LDPC) codes are a family of error correction codes used in communication systems to detect and correct erroneous data at the receiver. Data is encoded with error correction coding at the transmitter and decoded at the receiver. The Noisy Gradient Descent BitFlip (NGDBF) decoding algorithm is a new algorithm with excellent decoding performance with relatively low implementation requirements. This dissertation aims to characterize the performance of the NGDBF algorithm. A simple improvement over NGDBF called the Re-decoded NGDBF (R-NGDBF) is proposed to enhance the performance of NGDBF decoding algorithm. A general method to estimate the decoding parameters of NGDBF is presented. The estimated parameters are then verified in a hardware implementation of the decoder to validate the accuracy of the estimation technique

    Assessing the sustainability performance of inter-urban intelligent transport

    Get PDF
    The implementation of ITS to increase the efficiency of saturated highways has become increasingly prevalent. It is a high level objective for many international governments and operators that highways should be managed in a way that is both sustainable i.e. environmental, social and economically sound and supportive of a Low-Carbon-Energy Future. Some clarity is therefore needed to understand how Intelligent Transport Systems perform within the constraints of that objective. This thesis describes the development of performance criteria that reflect the contributions of Information Communication Technology (ICT) emissions, vehicle emissions and the embedded carbon within the physical transport infrastructure that typically comprises three types of Intelligent Transport System. Active Traffic Management, Intelligent Speed Adaptation and the Automated Highway System are a collection of systems designed to transform the road network into a highly efficient and congestion free transport solution and all possess varying levels of uncertainty in terms of sustainability performance. The performance criteria form part of a new framework methodology ‘EnvFUSION’ (Environmental Fusion for ITS) outlined here. An attributional LCA and c-LCA (consequential lifecycle assessment) are both undertaken which forms part of a data fusion process using data from various sources. The models forecast improvements for the three ITS technologies in-line with social acceptability, economic profitability and major carbon reduction scenarios up to 2050 on one of the UK's most congested highways. Analytical Hierarchy Process and Dempster-Shafer theory are used to weight criteria which form part of an Intelligent Transport Sustainability Index. Overall performance is then synthesized. Results indicate that there will be a substantial increase in socio-economic and emissions benefits, provided that the policies are in place and targets are reached which would otherwise delay their realisation. To conclude, an integrated strategic performance management framework is proposed which performs socio-technical comparisons of four key performance areas between ITS schemes in order to identify energy and emission hotspots

    Next Generation Internet of Things – Distributed Intelligence at the Edge and Human-Machine Interactions

    Get PDF
    This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment.The following chapters build on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT–EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment.The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual/ andaugmented reality (VR/AR), and artificial intelligence (AI) transformation.Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats.The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications.The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications.Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems.New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure.The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas

    Proceedings of the SUPTM 2022 conference

    Get PDF
    This book includes the proceedings of the 1st international Conference on Future Challenges in Sustainable Urban Planning & Territorial Management celebrated on January 17-19, 2022. Urban planning is an essential tool in our global society's journey towards sustainability. This tool is as important as the territorial management to execute the plans. Both, planning and management, must be efficient to achieve the goal of sustainability inside the general framework of Sustainable Development Goals of United Nations. It does not exist any B planet so, identify urban & territorial challenges in our territories such reaching sustainable mobility, diagnose natural hazards and control land resource consumption is mandatory for our XXI century generation. Planning land uses compatibles with the ecosystem services of territory and manage them by public-private cooperation systems is a greatly challenge for our global society. Human activities do not have very frequently among their objectives to maintain ecosystem services of territory. Therefore, this field of research must help to guarantee the maintenance of natural resources, also called Natural Capital, necessary for social and economic activities of our global society. This conference aims to be a space to share research works, ideas, experiences, projects, etc. in this field of knowledge. We want to put in value that planning and management are subjects that include technological and social matters and their own methodologies. Laws, rules and cultures of different countries around the world are or can be very diverse. But the planet is only one. Technologies are shared, methodologies to analyze territories are also communal to share experiences about the global goal of sustainability, so these events are a necessary way to build our joint future. We trust that the success of this first edition of the SUPTM conference (which has been attended by more than 200 researchers from the five continents) will be an opening step towards international collaboration and the dissemination of knowledge that is so important in this field of urban planning and territorial management

    Next Generation Internet of Things – Distributed Intelligence at the Edge and Human-Machine Interactions

    Get PDF
    This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment.The following chapters build on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT–EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment.The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual/ andaugmented reality (VR/AR), and artificial intelligence (AI) transformation.Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats.The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications.The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications.Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems.New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure.The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Proceedings of the European Conference on Agricultural Engineering AgEng2021

    Get PDF
    This proceedings book results from the AgEng2021 Agricultural Engineering Conference under auspices of the European Society of Agricultural Engineers, held in an online format based on the University of Évora, Portugal, from 4 to 8 July 2021. This book contains the full papers of a selection of abstracts that were the base for the oral presentations and posters presented at the conference. Presentations were distributed in eleven thematic areas: Artificial Intelligence, data processing and management; Automation, robotics and sensor technology; Circular Economy; Education and Rural development; Energy and bioenergy; Integrated and sustainable Farming systems; New application technologies and mechanisation; Post-harvest technologies; Smart farming / Precision agriculture; Soil, land and water engineering; Sustainable production in Farm buildings
    corecore