1,463 research outputs found

    Neural Models of Motion Integration, Segmentation, and Probablistic Decision-Making

    Full text link
    When brain mechanism carry out motion integration and segmentation processes that compute unambiguous global motion percepts from ambiguous local motion signals? Consider, for example, a deer running at variable speeds behind forest cover. The forest cover is an occluder that creates apertures through which fragments of the deer's motion signals are intermittently experienced. The brain coherently groups these fragments into a trackable percept of the deer in its trajectory. Form and motion processes are needed to accomplish this using feedforward and feedback interactions both within and across cortical processing streams. All the cortical areas V1, V2, MT, and MST are involved in these interactions. Figure-ground processes in the form stream through V2, such as the seperation of occluding boundaries of the forest cover from the boundaries of the deer, select the motion signals which determine global object motion percepts in the motion stream through MT. Sparse, but unambiguous, feauture tracking signals are amplified before they propogate across position and are intergrated with far more numerous ambiguous motion signals. Figure-ground and integration processes together determine the global percept. A neural model predicts the processing stages that embody these form and motion interactions. Model concepts and data are summarized about motion grouping across apertures in response to a wide variety of displays, and probabilistic decision making in parietal cortex in response to random dot displays.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    How Laminar Frontal Cortex and Basal Ganglia Circuits Interact to Control Planned and Reactive Saccades

    Full text link
    The basal ganglia and frontal cortex together allow animals to learn adaptive responses that acquire rewards when prepotent reflexive responses are insufficient. Anatomical studies show a rich pattern of interactions between the basal ganglia and distinct frontal cortical layers. Analysis of the laminar circuitry of the frontal cortex, together with its interactions with the basal ganglia, motor thalamus, superior colliculus, and inferotemporal and parietal cortices, provides new insight into how these brain regions interact to learn and perform complexly conditioned behaviors. A neural model whose cortical component represents the frontal eye fields captures these interacting circuits. Simulations of the neural model illustrate how it provides a functional explanation of the dynamics of 17 physiologically identified cell types found in these areas. The model predicts how action planning or priming (in cortical layers III and VI) is dissociated from execution (in layer V), how a cue may serve either as a movement target or as a discriminative cue to move elsewhere, and how the basal ganglia help choose among competing actions. The model simulates neurophysiological, anatomical, and behavioral data about how monkeys perform saccadic eye movement tasks, including fixation; single saccade, overlap, gap, and memory-guided saccades; anti-saccades; and parallel search among distractors.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-l-0409, N00014-92-J-1309, N00014-95-1-0657); National Science Foundation (IRI-97-20333)

    Decision support system for project monitoring portfolio

    Full text link
    Vallejo Antich, RA. (2010). Decision support system for project monitoring portfolio. http://hdl.handle.net/10251/8632.Archivo delegad

    Ways of Applying Artificial Intelligence in Software Engineering

    Full text link
    As Artificial Intelligence (AI) techniques have become more powerful and easier to use they are increasingly deployed as key components of modern software systems. While this enables new functionality and often allows better adaptation to user needs it also creates additional problems for software engineers and exposes companies to new risks. Some work has been done to better understand the interaction between Software Engineering and AI but we lack methods to classify ways of applying AI in software systems and to analyse and understand the risks this poses. Only by doing so can we devise tools and solutions to help mitigate them. This paper presents the AI in SE Application Levels (AI-SEAL) taxonomy that categorises applications according to their point of AI application, the type of AI technology used and the automation level allowed. We show the usefulness of this taxonomy by classifying 15 papers from previous editions of the RAISE workshop. Results show that the taxonomy allows classification of distinct AI applications and provides insights concerning the risks associated with them. We argue that this will be important for companies in deciding how to apply AI in their software applications and to create strategies for its use

    Two-Stage Fuzzy Multiple Kernel Learning Based on Hilbert-Schmidt Independence Criterion

    Full text link
    © 1993-2012 IEEE. Multiple kernel learning (MKL) is a principled approach to kernel combination and selection for a variety of learning tasks, such as classification, clustering, and dimensionality reduction. In this paper, we develop a novel fuzzy multiple kernel learning model based on the Hilbert-Schmidt independence criterion (HSIC) for classification, which we call HSIC-FMKL. In this model, we first propose an HSIC Lasso-based MKL formulation, which not only has a clear statistical interpretation that minimum redundant kernels with maximum dependence on output labels are found and combined, but also enables the global optimal solution to be computed efficiently by solving a Lasso optimization problem. Since the traditional support vector machine (SVM) is sensitive to outliers or noises in the dataset, fuzzy SVM (FSVM) is used to select the prediction hypothesis once the optimal kernel has been obtained. The main advantage of FSVM is that we can associate a fuzzy membership with each data point such that these data points can have different effects on the training of the learning machine. We propose a new fuzzy membership function using a heuristic strategy based on the HSIC. The proposed HSIC-FMKL is a two-stage kernel learning approach and the HSIC is applied in both stages. We perform extensive experiments on real-world datasets from the UCI benchmark repository and the application domain of computational biology which validate the superiority of the proposed model in terms of prediction accuracy

    Churchman\u27s Inquiring Systems: Kernel Theories for Knowledge Management

    Get PDF
    Churchman [1971] defines inquiry as an activity that produces knowledge. He examines the epistemologies of five schools of philosophy from the perspective of general systems theory, asking the question as to whether each is suitable as the basis for the design of computer-based inquiring systems. He considers systems design and design theory in some detail. We believe that Churchman\u27s inquiring systems can form the basis for the design of knowledge management systems and that the IS research community has hardly tapped the potential of inquiring systems in that regard. Mason and Mitroff [1973] brought inquiring systems into the IS literature early on, essentially making the work endogenous to the field. We argue that building on inquiring systems can contribute to developing IS as a discipline by maintaining continuity in research and developing a theory that IS can call its own. We believe that the lack of use of Churchman\u27s work may be due to its lack of visibility in recent years and attempt to remedy that by summarizing the basics of the inquirers in some detail, trying not to interpret, but to remain faithful to the original. The paper encourages readers to study the original and develop their own notion of how the inquirers might be used in knowledgemanagement work. There are probably as many different perspectives on how inquiring systems could support KMS as there are IS researchers willing to study them. We would like to encourage a proliferation of such perspectives
    • …
    corecore