555 research outputs found

    Retinal vessel segmentation using Gabor Filter and Textons

    Get PDF
    This paper presents a retinal vessel segmentation method that is inspired by the human visual system and uses a Gabor filter bank. Machine learning is used to optimize the filter parameters for retinal vessel extraction. The filter responses are represented as textons and this allows the corresponding membership functions to be used as the framework for learning vessel and non-vessel classes. Then, vessel texton memberships are used to generate segmentation results. We evaluate our method using the publicly available DRIVE database. It achieves competitive performance (sensitivity=0.7673, specificity=0.9602, accuracy=0.9430) compared to other recently published work. These figures are particularly interesting as our filter bank is quite generic and only includes Gabor responses. Our experimental results also show that the performance, in terms of sensitivity, is superior to other methods

    Unsupervised Retinal Blood Vessel Segmentation Technique using pdAPSO and Difference Image Methods for Detection of Diabetic Retinopathy

    Get PDF
    Retinal vessel segmentation is a practice that has the potential of enhancing accuracy in the diagnosis and timely prevention of illnesses that are related to blood vessels. Acute damage to the retinal vessel has been identified to be the main cause of blindness and impaired vision. A timely detection and control of these illnesses can greatly decrease the number of loss of sight cases. However, the manual protocol for such detection is laborious and although autonomous methods have been recommended, the accuracy of these methods is often unreliable. We propose the utilization of the Primal-Dual Asynchronous Particle Swarm Optimisation (pdAPSO) and differential image methods in addressing the drawbacks associated with segmentation of retinal vessels in this study. The fusion of pdAPSO and differential image (which focuses on the median filter) produced a significant enhancement in the segmentation of huge and miniscule retinal vessels. In addition, the method also decreased erroneous detection near the edge of the retinal (that is not sensitive to light). The results are favourable for the median filter when compared to mean filter and Gaussian filter. The accuracy rate of 0.9559 (with a specificity of sensitivity rate of 0.9855), and a sensitivity rate of 0.7218 were obtained when tested using the Digital Retinal Images for Vessel Extraction database. The above result is a pointer that our approach will help in detecting and diagnosing the damage done to the retinal and thereby preventing loss of sight

    Joint segmentation and classification of retinal arteries/veins from fundus images

    Full text link
    Objective Automatic artery/vein (A/V) segmentation from fundus images is required to track blood vessel changes occurring with many pathologies including retinopathy and cardiovascular pathologies. One of the clinical measures that quantifies vessel changes is the arterio-venous ratio (AVR) which represents the ratio between artery and vein diameters. This measure significantly depends on the accuracy of vessel segmentation and classification into arteries and veins. This paper proposes a fast, novel method for semantic A/V segmentation combining deep learning and graph propagation. Methods A convolutional neural network (CNN) is proposed to jointly segment and classify vessels into arteries and veins. The initial CNN labeling is propagated through a graph representation of the retinal vasculature, whose nodes are defined as the vessel branches and edges are weighted by the cost of linking pairs of branches. To efficiently propagate the labels, the graph is simplified into its minimum spanning tree. Results The method achieves an accuracy of 94.8% for vessels segmentation. The A/V classification achieves a specificity of 92.9% with a sensitivity of 93.7% on the CT-DRIVE database compared to the state-of-the-art-specificity and sensitivity, both of 91.7%. Conclusion The results show that our method outperforms the leading previous works on a public dataset for A/V classification and is by far the fastest. Significance The proposed global AVR calculated on the whole fundus image using our automatic A/V segmentation method can better track vessel changes associated to diabetic retinopathy than the standard local AVR calculated only around the optic disc.Comment: Preprint accepted in Artificial Intelligence in Medicin

    Multiscale approach of retinal blood vessels segmentation based on vessels segmentation with different scales

    Get PDF
    In this work, the authors developed retinal blood vessels segmentation approach using contrast limited adaptive histogram equalization, morphological filtering, k-means clustering, matched filtering for thin and thick vessels selection. The authors also applied matched filtering for thin vessels selection using the kernels which were built in order to determine the existence of line segments with different length and orientatio

    Analysis of thick and thin vessel pixel clustering for retinal blood vessel image segmentation

    Get PDF
    In this work, we revealed that digital image processing is an actual topic at present and it is widely used in various fields of medicine, including diagnosis of the eye fundus. An analysis of the dependence of the blood vessel segmentation results on the image of the eye fundus from various partitions to pixel classes corresponding to thick and thin vessels obtained by k-means clustering was mad

    Retinal Blood Vessel Segmentation as a Tool to Detect Diabetic Retinopathy

    Get PDF
    The retina is an important part of the eye for humans. Inbesides its main function as part of the sense of sight, in the worldmedically, the retina after an image can be used to detect a numberdiseases, such as diabetic retinopathy. To detect a number of diseases,Retinal digital images taken using a digital fundus camera are used.In detecting diabetic retinopathy, digital images are neededsegmented retina. Nevertheless, automatic segmentation of digital imagesthe retina is a complex work, given the presence of artifactsas well as noise on the retinal digital image, evenly illuminated, intensitylow, low contrast, and varying lengths of retinal blood vessels.In this research, a blood vessel segmentation software system has been designed through three stagesimage processing, namely (i) preprocessing, (ii) improving image quality, (iii) andsegmentation of retinal blood vessels. With three image processing stages, the performance value is obtained, i.e. 84.62

    A Review: Person Identification using Retinal Fundus Images

    Get PDF
    In this paper a review on biometric person identification has been discussed using features from retinal fundus image. Retina recognition is claimed to be the best person identification method among the biometric recognition systems as the retina is practically impossible to forge. It is found to be most stable, reliable and most secure among all other biometric systems. Retina inherits the property of uniqueness and stability. The features used in the recognition process are either blood vessel features or non-blood vessel features. But the vascular pattern is the most prominent feature utilized by most of the researchers for retina based person identification. Processes involved in this authentication system include pre-processing, feature extraction and feature matching. Bifurcation and crossover points are widely used features among the blood vessel features. Non-blood vessel features include luminance, contrast, and corner points etc. This paper summarizes and compares the different retina based authentication system. Researchers have used publicly available databases such as DRIVE, STARE, VARIA, RIDB, ARIA, AFIO, DRIDB, and SiMES for testing their methods. Various quantitative measures such as accuracy, recognition rate, false rejection rate, false acceptance rate, and equal error rate are used to evaluate the performance of different algorithms. DRIVE database provides 100\% recognition for most of the methods. Rest of the database the accuracy of recognition is more than 90\%

    Detection and Classification of Diabetic Retinopathy Pathologies in Fundus Images

    Get PDF
    Diabetic Retinopathy (DR) is a disease that affects up to 80% of diabetics around the world. It is the second greatest cause of blindness in the Western world, and one of the leading causes of blindness in the U.S. Many studies have demonstrated that early treatment can reduce the number of sight-threatening DR cases, mitigating the medical and economic impact of the disease. Accurate, early detection of eye disease is important because of its potential to reduce rates of blindness worldwide. Retinal photography for DR has been promoted for decades for its utility in both disease screening and clinical research studies. In recent years, several research centers have presented systems to detect pathology in retinal images. However, these approaches apply specialized algorithms to detect specific types of lesion in the retina. In order to detect multiple lesions, these systems generally implement multiple algorithms. Furthermore, some of these studies evaluate their algorithms on a single dataset, thus avoiding potential problems associated with the differences in fundus imaging devices, such as camera resolution. These methodologies primarily employ bottom-up approaches, in which the accurate segmentation of all the lesions in the retina is the basis for correct determination. A disadvantage of bottom-up approaches is that they rely on the accurate segmentation of all lesions in order to measure performance. On the other hand, top-down approaches do not depend on the segmentation of specific lesions. Thus, top-down methods can potentially detect abnormalities not explicitly used in their training phase. A disadvantage of these methods is that they cannot identify specific pathologies and require large datasets to build their training models. In this dissertation, I merged the advantages of the top-down and bottom-up approaches to detect DR with high accuracy. First, I developed an algorithm based on a top-down approach to detect abnormalities in the retina due to DR. By doing so, I was able to evaluate DR pathologies other than microaneurysms and exudates, which are the main focus of most current approaches. In addition, I demonstrated good generalization capacity of this algorithm by applying it to other eye diseases, such as age-related macular degeneration. Due to the fact that high accuracy is required for sight-threatening conditions, I developed two bottom-up approaches, since it has been proven that bottom-up approaches produce more accurate results than top-down approaches for particular structures. Consequently, I developed an algorithm to detect exudates in the macula. The presence of this pathology is considered to be a surrogate for clinical significant macular edema (CSME), a sight-threatening condition of DR. The analysis of the optic disc is usually not taken into account in DR screening systems. However, there is a pathology called neovascularization that is present in advanced stages of DR, making its detection of crucial clinical importance. In order to address this problem, I developed an algorithm to detect neovascularization in the optic disc. These algorithms are based on amplitude-modulation and frequency-modulation (AM-FM) representations, morphological image processing methods, and classification algorithms. The methods were tested on a diverse set of large databases and are considered to be the state-of the art in this field
    corecore