106 research outputs found

    Applications of artificial intelligence in ship berthing: A review

    Get PDF
    Ship berthing operations in restricted waters such as ports requires the accurate use of onboard-vessel equipment such as rudder, thrusters, and main propulsions. For big ships, the assistance of exterior supports such as tugboats are necessary, however with the advancement of technology, we may hypothesize that the use of artificial intelligence to support ship berthing safely at ports without the dependency on the tugboats may be a reality. In this paper we comprehensively assessed and analyzed several literatures regarding this topic. Through this review, we seek out to present a better understanding of the use of artificial intelligence in ship berthing especially neural networks and collision avoidance algorithms. We discovered that the use of global and local path planning combined with Artificial Neural Network (ANN) may help to achieve collision avoidance while completing ship berthing operations

    Applications of artificial intelligence in ship berthing: A review

    Get PDF
    855-863Ship berthing operations in restricted waters such as ports requires the accurate use of onboard-vessel equipment such as rudder, thrusters, and main propulsions. For big ships, the assistance of exterior supports such as tugboats are necessary, however with the advancement of technology, we may hypothesize that the use of artificial intelligence to support ship berthing safely at ports without the dependency on the tugboats may be a reality. In this paper we comprehensively assessed and analyzed several literatures regarding this topic. Through this review, we seek out to present a better understanding of the use of artificial intelligence in ship berthing especially neural networks and collision avoidance algorithms. We discovered that the use of global and local path planning combined with Artificial Neural Network (ANN) may help to achieve collision avoidance while completing ship berthing operations

    Finite-Time Observer Based Guidance and Control of Underactuated Surface Vehicles with Unknown Sideslip Angles and Disturbances

    Get PDF
    Suffering from complex sideslip angles, path following control of an under actuated surface vehicle (USV) becomes significantly challenging and remains unresolved. In this paper, a finite-time observer based guidance and control (FOGC) scheme for path following of an USV with time-varying and large sideslip angles and unknown external disturbances is proposed. The salient features of the proposed FOGC scheme are as follows: 1) time-varying large sideslip angle is exactly estimated by a finite-time sideslip observer, and thereby contributing to the sideslip-tangent line-of-sight guidance law which significantly enhances the robustness of the guidance system to unknown sideslip angles which are significantly large and time-varying; 2) a finite-time disturbance observer (FDO) is devised to exactly observe unknown external disturbances, and thereby implementing FDO-based surge and heading robust tracking controllers, which possess remarkable tracking accuracy and precise disturbance rejection, simultaneously; and 3) by virtue of cascade analysis and Lyapunov approach, global asymptotic stability of the integrated guidance-control system is rigorously ensured. Simulation studies and comparisons are conducted to demonstrate the effectiveness and superiority of the proposed FOGC scheme

    Fast and accurate trajectory tracking control of an autonomous surface vehicle with unmodeled dynamics and disturbances

    Get PDF
    In this paper, fast and accurate trajectory tracking control of an autonomous surface vehicle (ASV) with complex unknowns including unmodeled dynamics, uncertainties and/or unknown disturbances is addressed within a proposed homogeneity-based finite-time control (HFC) framework. Major contributions are as follows: (1) In the absence of external disturbances, a nominal HFC framework is established to achieve exact trajectory tracking control of an ASV, whereby global finitetime stability is ensured by combining homogeneous analysis and Lyapunov approach; (2) Within the HFC scheme, a finite-time disturbance observer (FDO) is further nested to rapidly and accurately reject complex disturbances, and thereby contributing to an FDO-based HFC (FDO-HFC) scheme which can realize exactness of trajectory tracking and disturbance observation; (3) Aiming to exactly deal with complicated unknowns including unmodeled dynamics and/or disturbances, a finite-time unknown observer (FUO) is deployed as a patch for the nominal HFC framework, and eventually results in an FUO-based HFC (FUOHFC) scheme which guarantees that accurate trajectory tracking can be achieved for an ASV under harsh environments. Simulation studies and comprehensive comparisons conducted on a benchmark ship demonstrate the effectiveness and superiority of the proposed HFC schemes

    Dynamical systems : control and stability

    Get PDF
    Proceedings of the 13th Conference „Dynamical Systems - Theory and Applications" summarize 164 and the Springer Proceedings summarize 60 best papers of university teachers and students, researchers and engineers from whole the world. The papers were chosen by the International Scientific Committee from 315 papers submitted to the conference. The reader thus obtains an overview of the recent developments of dynamical systems and can study the most progressive tendencies in this field of science

    Robust Model Predictive Control for Linear Parameter Varying Systems along with Exploration of its Application in Medical Mobile Robots

    Get PDF
    This thesis seeks to develop a robust model predictive controller (MPC) for Linear Parameter Varying (LPV) systems. LPV models based on input-output display are employed. We aim to improve robust MPC methods for LPV systems with an input-output display. This improvement will be examined from two perspectives. First, the system must be stable in conditions of uncertainty (in signal scheduling or due to disturbance) and perform well in both tracking and regulation problems. Secondly, the proposed method should be practical, i.e., it should have a reasonable computational load and not be conservative. Firstly, an interpolation approach is utilized to minimize the conservativeness of the MPC. The controller is calculated as a linear combination of a set of offline predefined control laws. The coefficients of these offline controllers are derived from a real-time optimization problem. The control gains are determined to ensure stability and increase the terminal set. Secondly, in order to test the system's robustness to external disturbances, a free control move was added to the control law. Also, a Recurrent Neural Network (RNN) algorithm is applied for online optimization, showing that this optimization method has better speed and accuracy than traditional algorithms. The proposed controller was compared with two methods (robust MPC and MPC with LPV model based on input-output) in reference tracking and disturbance rejection scenarios. It was shown that the proposed method works well in both parts. However, two other methods could not deal with the disturbance. Thirdly, a support vector machine was introduced to identify the input-output LPV model to estimate the output. The estimated model was compared with the actual nonlinear system outputs, and the identification was shown to be effective. As a consequence, the controller can accurately follow the reference. Finally, an interpolation-based MPC with free control moves is implemented for a wheeled mobile robot in a hospital setting, where an RNN solves the online optimization problem. The controller was compared with a robust MPC and MPC-LPV in reference tracking, disturbance rejection, online computational load, and region of attraction. The results indicate that our proposed method surpasses and can navigate quickly and reliably while avoiding obstacles

    Temporospatial Context-Aware Vehicular Crash Risk Prediction

    Get PDF
    With the demand for more vehicles increasing, road safety is becoming a growing concern. Traffic collisions take many lives and cost billions of dollars in losses. This explains the growing interest of governments, academic institutions and companies in road safety. The vastness and availability of road accident data has provided new opportunities for gaining a better understanding of accident risk factors and for developing more effective accident prediction and prevention regimes. Much of the empirical research on road safety and accident analysis utilizes statistical models which capture limited aspects of crashes. On the other hand, data mining has recently gained interest as a reliable approach for investigating road-accident data and for providing predictive insights. While some risk factors contribute more frequently in the occurrence of a road accident, the importance of driver behavior, temporospatial factors, and real-time traffic dynamics have been underestimated. This study proposes a framework for predicting crash risk based on historical accident data. The proposed framework incorporates machine learning and data analytics techniques to identify driving patterns and other risk factors associated with potential vehicle crashes. These techniques include clustering, association rule mining, information fusion, and Bayesian networks. Swarm intelligence based association rule mining is employed to uncover the underlying relationships and dependencies in collision databases. Data segmentation methods are employed to eliminate the effect of dependent variables. Extracted rules can be used along with real-time mobility to predict crashes and their severity in real-time. The national collision database of Canada (NCDB) is used in this research to generate association rules with crash risk oriented subsequents, and to compare the performance of the swarm intelligence based approach with that of other association rule miners. Many industry-demanding datasets, including road-accident datasets, are deficient in descriptive factors. This is a significant barrier for uncovering meaningful risk factor relationships. To resolve this issue, this study proposes a knwoledgebase approximation framework to enhance the crash risk analysis by integrating pieces of evidence discovered from disparate datasets capturing different aspects of mobility. Dempster-Shafer theory is utilized as a key element of this knowledgebase approximation. This method can integrate association rules with acceptable accuracy under certain circumstances that are discussed in this thesis. The proposed framework is tested on the lymphography dataset and the road-accident database of the Great Britain. The derived insights are then used as the basis for constructing a Bayesian network that can estimate crash likelihood and risk levels so as to warn drivers and prevent accidents in real-time. This Bayesian network approach offers a way to implement a naturalistic driving analysis process for predicting traffic collision risk based on the findings from the data-driven model. A traffic incident detection and localization method is also proposed as a component of the risk analysis model. Detecting and localizing traffic incidents enables timely response to accidents and facilitates effective and efficient traffic flow management. The results obtained from the experimental work conducted on this component is indicative of the capability of our Dempster-Shafer data-fusion-based incident detection method in overcoming the challenges arising from erroneous and noisy sensor readings

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Autonomous Marine Vehicles: Control-Oriented Modeling and Applications

    Get PDF
    This thesis will presents the state of the art and the personal contribution to the control-oriented modeling and control of marine vehicles. It is divided in two parts, the first one describes the scientific results related to the modeling and control aspects, while the second part describes an application related to the UAN project and a real-time distributed supervision system. The first result, described in chapter n.1, was motivated by the existence of a new class of hybrid underwater vehicles equipped with classic AUV and glider actuators. In particular, a dynamic model was derived for the general class of hybrid-propulsion vehicles, to which the case study eFolaga belongs. This development was made possible by considering a kinematic relaxation: the effects of the Centre of Gravity (COG) variations on the linear speed of the vehicle were neglected. The resulting simplified kinetic model, including the COG motion variation effects, takes a standard control-oriented form and consequently it can be easily used with all the available literature results regarding control and related aspects. This simplification works out if the COG speed is very small as compared to the vehicle speed, as it is the case of the eFolaga and of most vehicles with internal mass displacement systems. The second result, described in chapter n.2, was motivated by the need of a underwater vehicle capable to achieve high-energy efficiency by extracting propulsion directly from the sea-waves. The novel vehicle was designed to combine typical underwater capabilities such as underwater navigation and low-consumption gliding, with the clean-energy oriented feature of sea-wave energy extraction and propulsion conversion. The resulting vehicle, named Underwater Wave Glider (UWG) exploits the sea wave potential and the surface fluid profile with hydrodynamic wings to achieve a clean-energy passive propulsion. Currently the UWG is object of a combined study between ISME1 and CSSN2 . The importance of analyzing systems under constant sea-wave excitation motivated the study described in chapter n.3. In particular a method to combine surface models, described for instance with Motion Response Amplitude Operation (RAO), with classic underwater model was developed to evaluate system performances during floating motion. The resulting hybrid model, while capturing frequency domain specification of surface motion model, is able to provide time-varying access to the sea-wave induced effects acting on submerged vehicle parts. The chapter n.4, concluding the first part of the thesis, is dedicated to the control-allocation problem. In fact, the capability to reproduce coherently forces and moments through an intelligent use of actuators is a common requirement for marine vehicles control systems. The results presented, applied to a quite diffused class of marine vessels, can also be extended to other underwater or surface vehicle classes, by including the proper actuator spatial distribution and limitations. In particular, a parametric sequential quadratic programming method is proposed to solve the problem of control allocation with unconstrained forces/moments references. The new formulation, as shown in detail in the chapter, improves performances, with respect to the state-of-the-art, in case of not-feasibility or actuator saturation conditions. The second method, is used to properly distribute actuators configurations by exploiting a norm-infinity bounded reference set. This particular case has a direct impact on all vehicles of the considered class, equipped with human-interface-device (HID) systems. The implication of these new methods, together with the new drive-by-wire methodology, could affect considerably the nowadays vehicles maneuvering capabilities. The second part of the thesis is dedicated to the applications. In particular chapter n.5 will discuss experimental results of the UAN project final experiment in Throndheim, Norway (2011). Finally, chapter n.6 will present a cross-platform distributed system, named DCL, used to implement Hardware-In-the-Loop (HIL) and Software-In-the-Loop methodologies and to supervise real-time RTAI processes
    corecore