1,334 research outputs found

    Development of ECG and EMG platform with IMU to eliminate the motion artifacts found in measurements

    Get PDF
    The long term measurement and analysis of electrophysiological parameters is crucial for diagnosis of chronic diseases, and to monitor critical health parameters. It is also very important to monitor physical fitness improvement, or degradation level, of human beings where physical fitness is entirely critical for their work, or of more vulnerable members of society such as senior citizens and the sick. The state-of-the-art technological developments are leading to the use of artificial intelligence in the continuous monitoring and identification of life-threatening events in the daily life of ordinary people. However, these ambulatory measurements of electrophysiological parameters leads to drastic motion artifacts because of the test subject’s movements. Therefore, there is a dire need for the development of both hardware and software solutions to address this challenge. The scope of this thesis is to develop a hardware platform, by using off-the-shelf discrete and IC electronic components, to measure two electrophysiological parameters, electrocardiogram (ECG) and electromyogram (EMG), with an additional motion sensor inertial measurement unit (IMU) comprising nine degrees of freedom. The ECG, EMG and IMU data will be collected using the developed measurement platform from various predefined day-to-day routine activity events. A Bluetooth interface will be developed to transmit the data wirelessly, and record it on a laptop for further real-time processing. The resources of the electrical workshop and measurement lab at Aalto University will be used for the development, assembly, testing and finally for research of the measurement platform. The second aspect of the study is to prepare, process and analyze the recorded ECG and EMG data by using MATLAB. Various filtering, denoising, processing and analysis algorithms will be developed and executed to extract the features of the ECG and EMG waveform structures. Finally, graphical representations will be made for the resulting outputs of the aforementioned techniques

    Tutorial: A Versatile Bio-Inspired System for Processing and Transmission of Muscular Information

    Get PDF
    Device wearability and operating time are trending topics in recent state-of-art works on surface ElectroMyoGraphic (sEMG) muscle monitoring. No optimal trade-off, able to concurrently address several problems of the acquisition system like robustness, miniaturization, versatility, and power efficiency, has yet been found. In this tutorial we present a solution to most of these issues, embedding in a single device both an sEMG acquisition channel, with our custom event-driven hardware feature extraction technique (named Average Threshold Crossing), and a digital part, which includes a microcontroller unit, for (optionally) sEMG sampling and processing, and a Bluetooth communication, for wireless data transmission. The knowledge acquired by the research group brought to an accurate selection of each single component, resulting in a very efficient prototype, with a comfortable final size (57.8mm x 25.2mm x 22.1mm) and a consistent signal-to-noise ratio of the acquired sEMG (higher than 15 dB). Furthermore, a precise design of the firmware has been performed, handling both signal acquisition and Bluetooth transmission concurrently, thanks to a FreeRTOS custom implementation. In particular, the system adapts to both sEMG and ATC transmission, with an application throughput up to 2 kB s-1 and an average operating time of 80 h (for high resolution sEMG sampling), relaxable to 8Bs-1 throughput and about 230 h operating time (considering a 110mAh battery), in case of ATC acquisition only. Here we share our experience over the years in designing wearable systems for the sEMG detection, specifying in detail how our event-driven approach could benefit the device development phases. Some previous basic knowledge about biosignal acquisition, electronic circuits and programming would certainly ease the repeatability of this tutorial

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Hand Gestures Recognition for Human-Machine Interfaces: A Low-Power Bio-Inspired Armband

    Get PDF
    Hand gesture recognition has recently increased its popularity as Human-Machine Interface (HMI) in the biomedical field. Indeed, it can be performed involving many different non-invasive techniques, e.g., surface ElectroMyoGraphy (sEMG) or PhotoPlethysmoGraphy (PPG). In the last few years, the interest demonstrated by both academia and industry brought to a continuous spawning of commercial and custom wearable devices, which tried to address different challenges in many application fields, from tele-rehabilitation to sign language recognition. In this work, we propose a novel 7-channel sEMG armband, which can be employed as HMI for both serious gaming control and rehabilitation support. In particular, we designed the prototype focusing on the capability of our device to compute the Average Threshold Crossing (ATC) parameter, which is evaluated by counting how many times the sEMG signal crosses a threshold during a fixed time duration (i.e., 130 ms), directly on the wearable device. Exploiting the event-driven characteristic of the ATC, our armband is able to accomplish the on-board prediction of common hand gestures requiring less power w.r.t. state of the art devices. At the end of an acquisition campaign that involved the participation of 26 people, we obtained an average classifier accuracy of 91.9% when aiming to recognize in real time 8 active hand gestures plus the idle state. Furthermore, with 2.92mA of current absorption during active functioning and 1.34mA prediction latency, this prototype confirmed our expectations and can be an appealing solution for long-term (up to 60 h) medical and consumer applications

    Low Latency Protocols Investigation for Event-Driven Wireless Body Area Networks

    Get PDF
    Nowadays distributed electronic health and fitness monitoring are hot-topics in bio-engineering, however common solutions for Wireless Body Area Networks (WBANs) featuring high-density sampled data transmission still stumbles over the trade-off among data rate, application throughput, and latency. Therefore, the Bluetooth Low Energy (BLE) and the IEEE 802.15.4 protocols are here investigated, with the aim of developing an event-driven WBAN to support a threshold-crossing surface ElectroMyoGraphy (sEMG) acquisition approach. We then implemented a custom protocol to overcome their limitations and fulfil all the requirements, resulting in a transmission latency of 0.856 ms ± 1 µs and enabling a functional operating time up to 110 h

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    Problems in assessment of novel biopotential front-end with dry electrode:A brief review

    Get PDF
    Developers of novel or improved front-end circuits for biopotential recordings using dry electrodes face the challenge of validating their design. Dry electrodes allow more user-friendly and pervasive patient-monitoring, but proof is required that new devices can perform biopotential recording with a quality at least comparable to existing medical devices. Aside from electrical safety requirement recommended by standards and concise circuit requirement, there is not yet a complete validation procedure able to demonstrate improved or even equivalent performance of the new devices. This short review discusses the validation procedures presented in recent, landmark literature and offers interesting issues and hints for a more complete assessment of novel biopotential front-end

    Sensor selection for energy-efficient ambulatory medical monitoring

    Get PDF
    Epilepsy affects over three million Americans of all ages. Despite recent advances, more than 20% of individuals with epilepsy never achieve adequate control of their seizures. The use of a small, portable, non-invasive seizure monitor could benefit these individuals tremendously. However, in order for such a device to be suitable for long-term wear, it must be both comfortable and lightweight. Typical state-of-the-art non-invasive seizure onset detection algorithms require 21 scalp electrodes to be placed on the head. These electrodes are used to generate 18 data streams, called channels. The large number of electrodes is inconvenient for the patient and processing 18 channels can consume a considerable amount of energy, a problem for a battery-powered device. In this paper, we describe an automated way to construct detectors that use fewer channels, and thus fewer electrodes. Starting from an existing technique for constructing 18 channel patient-specific detectors, we use machine learning to automatically construct reduced channel detectors. We evaluate our algorithm on data from 16 patients used in an earlier study. On average, our algorithm reduced the number of channels from 18 to 4.6 while decreasing the mean fraction of seizure onsets detected from 99% to 97%. For 12 out of the 16 patients, there was no degradation in the detection rate. While the average detection latency increased from 7.8 s to 11.2 s, the average rate of false alarms per hour decreased from 0.35 to 0.19. We also describe a prototype implementation of a single channel EEG monitoring device built using off-the-shelf components, and use this implementation to derive an energy consumption model. Using fewer channels reduced the average energy consumption by 69%, which amounts to a 3.3x increase in battery lifetime. Finally, we show how additional energy savings can be realized by using a low-power screening detector to rule out segments of data that are obviously not seizures. Though this technique does not reduce the number of electrodes needed, it does reduce the energy consumption by an additional 16%
    • …
    corecore