132,021 research outputs found

    REMAP: Multi-layer entropy-guided pooling of dense CNN features for image retrieval

    Full text link
    This paper addresses the problem of very large-scale image retrieval, focusing on improving its accuracy and robustness. We target enhanced robustness of search to factors such as variations in illumination, object appearance and scale, partial occlusions, and cluttered backgrounds - particularly important when search is performed across very large datasets with significant variability. We propose a novel CNN-based global descriptor, called REMAP, which learns and aggregates a hierarchy of deep features from multiple CNN layers, and is trained end-to-end with a triplet loss. REMAP explicitly learns discriminative features which are mutually-supportive and complementary at various semantic levels of visual abstraction. These dense local features are max-pooled spatially at each layer, within multi-scale overlapping regions, before aggregation into a single image-level descriptor. To identify the semantically useful regions and layers for retrieval, we propose to measure the information gain of each region and layer using KL-divergence. Our system effectively learns during training how useful various regions and layers are and weights them accordingly. We show that such relative entropy-guided aggregation outperforms classical CNN-based aggregation controlled by SGD. The entire framework is trained in an end-to-end fashion, outperforming the latest state-of-the-art results. On image retrieval datasets Holidays, Oxford and MPEG, the REMAP descriptor achieves mAP of 95.5%, 91.5%, and 80.1% respectively, outperforming any results published to date. REMAP also formed the core of the winning submission to the Google Landmark Retrieval Challenge on Kaggle.Comment: Submitted to IEEE Trans. Image Processing on 24 May 2018, published 22 May 201

    Shot-based object retrieval from video with compressed Fisher vectors

    Get PDF
    This paper addresses the problem of retrieving those shots from a database of video sequences that match a query image. Existing architectures are mainly based on Bag of Words model, which consists in matching the query image with a high-level representation of local features extracted from the video database. Such architectures lack however the capability to scale up to very large databases. Recently, Fisher Vectors showed promising results in large scale image retrieval problems, but it is still not clear how they can be best exploited in video-related applications. In our work, we use compressed Fisher Vectors to represent the video-shots and we show that inherent correlation between video-frames can be proficiently exploited. Experiments show that our proposal enables better performance for lower computational requirements than similar architectures

    Region-based volumetric medical image retrieval

    Get PDF
    Volumetric medical images contain an enormous amount of visual information that can discourage the exhaustive use of local descriptors for image analysis, comparison and retrieval. Distinctive features and patterns that need to be analyzed for finding diseases are most often local or regional, often in only very small parts of the image. Separating the large amount of image data that might contain little important information is an important task as it could reduce the current information overload of physicians and make clinical work more efficient. In this paper a novel method for detecting key-regions is introduced as a way of extending the concept of keypoints often used in 2D image analysis. In this way also computation is reduced as important visual features are only extracted from the detected key regions. The region detection method is integrated into a platform-independent, web-based graphical interface for medical image visualization and retrieval in three dimensions. This web-based interface makes it easy to deploy on existing infrastructures in both small and large-scale clinical environments. By including the region detection method into the interface, manual annotation is reduced and time is saved, making it possible to integrate the presented interface and methods into clinical routine and work ows, analyzing image data at a large scale

    Registration and categorization of camera captured documents

    Get PDF
    Camera captured document image analysis concerns with processing of documents captured with hand-held sensors, smart phones, or other capturing devices using advanced image processing, computer vision, pattern recognition, and machine learning techniques. As there is no constrained capturing in the real world, the captured documents suffer from illumination variation, viewpoint variation, highly variable scale/resolution, background clutter, occlusion, and non-rigid deformations e.g., folds and crumples. Document registration is a problem where the image of a template document whose layout is known is registered with a test document image. Literature in camera captured document mosaicing addressed the registration of captured documents with the assumption of considerable amount of single chunk overlapping content. These methods cannot be directly applied to registration of forms, bills, and other commercial documents where the fixed content is distributed into tiny portions across the document. On the other hand, most of the existing document image registration methods work with scanned documents under affine transformation. Literature in document image retrieval addressed categorization of documents based on text, figures, etc. However, the scalability of existing document categorization methodologies based on logo identification is very limited. This dissertation focuses on two problems (i) registration of captured documents where the overlapping content is distributed into tiny portions across the documents and (ii) categorization of captured documents into predefined logo classes that scale to large datasets using local invariant features. A novel methodology is proposed for the registration of user defined Regions Of Interest (ROI) using corresponding local features from their neighborhood. The methodology enhances prior approaches in point pattern based registration, like RANdom SAmple Consensus (RANSAC) and Thin Plate Spline-Robust Point Matching (TPS-RPM), to enable registration of cell phone and camera captured documents under non-rigid transformations. Three novel aspects are embedded into the methodology: (i) histogram based uniformly transformed correspondence estimation, (ii) clustering of points located near the ROI to select only close by regions for matching, and (iii) validation of the registration in RANSAC and TPS-RPM algorithms. Experimental results on a dataset of 480 images captured using iPhone 3GS and Logitech webcam Pro 9000 have shown an average registration accuracy of 92.75% using Scale Invariant Feature Transform (SIFT). Robust local features for logo identification are determined empirically by comparisons among SIFT, Speeded-Up Robust Features (SURF), Hessian-Affine, Harris-Affine, and Maximally Stable Extremal Regions (MSER). Two different matching methods are presented for categorization: matching all features extracted from the query document as a single set and a segment-wise matching of query document features using segmentation achieved by grouping area under intersecting dense local affine covariant regions. The later approach not only gives an approximate location of predicted logo classes in the query document but also helps to increase the prediction accuracies. In order to facilitate scalability to large data sets, inverted indexing of logo class features has been incorporated in both approaches. Experimental results on a dataset of real camera captured documents have shown a peak 13.25% increase in the F–measure accuracy using the later approach as compared to the former

    Handwritten Document Analysis for Automatic Writer Recognition

    Get PDF
    In this paper, we show that both the writer identification and the writer verification tasks can be carried out using local features such as graphemes extracted from the segmentation of cursive handwriting. We thus enlarge the scope of the possible use of these two tasks which have been, up to now, mainly evaluated on script handwritings. A textual based Information Retrieval model is used for the writer identification stage. This allows the use of a particular feature space based on feature frequencies. Image queries are handwritten documents projected in this feature space. The approach achieves 95% correct identification on the PSI_DataBase and 86% on the IAM_DataBase. Then writer hypothesis retrieved are analysed during a verification phase. We call upon a mutual information criterion to verify that two documents may have been produced by the same writer or not. Hypothesis testing is used for this purpose. The proposed method is first scaled on the PSI_DataBase then evaluated on the IAM_DataBase. On both databases, similar performance of nearly 96% correct verification is reported, thus making the approach general and very promising for large scale applications in the domain of handwritten document querying and writer verification

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval
    • …
    corecore