152 research outputs found

    Very fast solution to the PnP problem with algebraic outlier rejection

    Get PDF
    Presentado al CVPR 2014 celebrado en Columbus, Ohio (US) del 23 al 28 de junio.We propose a real-time, robust to outliers and accurate solution to the Perspective-n-Point (PnP) problem. The main advantages of our solution are twofold: first, it integrates the outlier rejection within the pose estimation pipeline with a negligible computational overhead; and second, its scalability to arbitrarily large number of correspondences. Given a set of 3D-to-2D matches, we formulate pose estimation problem as a low-rank homogeneous system where the solution lies on its 1D null space. Outlier correspondences are those rows of the linear system which perturb the null space and are progressively detected by projecting them on an iteratively estimated solution of the null space. Since our outlier removal process is based on an algebraic criterion which does not require computing the full-pose and reprojecting back all 3D points on the image plane at each step, we achieve speed gains of more than 100× compared to RANSAC strategies. An extensive experimental evaluation will show that our solution yields accurate results in situations with up to 50% of outliers, and can process more than 1000 correspondences in less than 5ms.This work has been partially funded by Spanish government under projects DPI2011-27510, IPT-2012-0630-020000, IPT-2011-1015-430000 and CICYT grant TIN2012-39203; by the EU project ARCAS FP7-ICT-2011-28761; and by the ERA-Net Chistera project ViSen PCIN-2013-047Peer Reviewe

    A Novel Method for the Absolute Pose Problem with Pairwise Constraints

    Full text link
    Absolute pose estimation is a fundamental problem in computer vision, and it is a typical parameter estimation problem, meaning that efforts to solve it will always suffer from outlier-contaminated data. Conventionally, for a fixed dimensionality d and the number of measurements N, a robust estimation problem cannot be solved faster than O(N^d). Furthermore, it is almost impossible to remove d from the exponent of the runtime of a globally optimal algorithm. However, absolute pose estimation is a geometric parameter estimation problem, and thus has special constraints. In this paper, we consider pairwise constraints and propose a globally optimal algorithm for solving the absolute pose estimation problem. The proposed algorithm has a linear complexity in the number of correspondences at a given outlier ratio. Concretely, we first decouple the rotation and the translation subproblems by utilizing the pairwise constraints, and then we solve the rotation subproblem using the branch-and-bound algorithm. Lastly, we estimate the translation based on the known rotation by using another branch-and-bound algorithm. The advantages of our method are demonstrated via thorough testing on both synthetic and real-world dataComment: 10 pages, 7figure

    MLPnP - A Real-Time Maximum Likelihood Solution to the Perspective-n-Point Problem

    Get PDF
    In this paper, a statistically optimal solution to the Perspective-n-Point (PnP) problem is presented. Many solutions to the PnP problem are geometrically optimal, but do not consider the uncertainties of the observations. In addition, it would be desirable to have an internal estimation of the accuracy of the estimated rotation and translation parameters of the camera pose. Thus, we propose a novel maximum likelihood solution to the PnP problem, that incorporates image observation uncertainties and remains real-time capable at the same time. Further, the presented method is general, as is works with 3D direction vectors instead of 2D image points and is thus able to cope with arbitrary central camera models. This is achieved by projecting (and thus reducing) the covariance matrices of the observations to the corresponding vector tangent space.Comment: Submitted to the ISPRS congress (2016) in Prague. Oral Presentation. Published in ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-3, 131-13

    Efficient monocular pose estimation for complex 3D models

    Get PDF
    Trabajo presentado al ICRA celebrado en Seattle (US) del 26 al 30 de mayo de 2015.We propose a robust and efficient method to estimate the pose of a camera with respect to complex 3D textured models of the environment that can potentially contain more than 100, 000 points. To tackle this problem we follow a top down approach where we combine high-level deep network classifiers with low level geometric approaches to come up with a solution that is fast, robust and accurate. Given an input image, we initially use a pre-trained deep network to compute a rough estimation of the camera pose. This initial estimate constrains the number of 3D model points that can be seen from the camera viewpoint. We then establish 3D-to-2D correspondences between these potentially visible points of the model and the 2D detected image features. Accurate pose estimation is finally obtained from the 2D-to-3D correspondences using a novel PnP algorithm that rejects outliers without the need to use a RANSAC strategy, and which is between 10 and 100 times faster than other methods that use it. Two real experimentsdealing with very large and complex 3D models demonstrate the effectiveness of the approach.This work has been partially funded by the Spanish Ministry of Economy and Competitiveness under projects ERANet Chistera project ViSen PCIN-2013-047, PAU+ DPI2011-27510 and ROBOT-INT-COOP DPI2013-42458-P, and by the EU project ARCAS FP7-ICT-2011-28761.Peer Reviewe

    Accurate and linear time pose estimation from points and lines

    Get PDF
    The final publication is available at link.springer.comThe Perspective-n-Point (PnP) problem seeks to estimate the pose of a calibrated camera from n 3Dto-2D point correspondences. There are situations, though, where PnP solutions are prone to fail because feature point correspondences cannot be reliably estimated (e.g. scenes with repetitive patterns or with low texture). In such scenarios, one can still exploit alternative geometric entities, such as lines, yielding the so-called Perspective-n-Line (PnL) algorithms. Unfortunately, existing PnL solutions are not as accurate and efficient as their point-based counterparts. In this paper we propose a novel approach to introduce 3D-to-2D line correspondences into a PnP formulation, allowing to simultaneously process points and lines. For this purpose we introduce an algebraic line error that can be formulated as linear constraints on the line endpoints, even when these are not directly observable. These constraints can then be naturally integrated within the linear formulations of two state-of-the-art point-based algorithms, the OPnP and the EPnP, allowing them to indistinctly handle points, lines, or a combination of them. Exhaustive experiments show that the proposed formulation brings remarkable boost in performance compared to only point or only line based solutions, with a negligible computational overhead compared to the original OPnP and EPnP.Peer ReviewedPostprint (author's final draft

    Leveraging feature uncertainty in the PnP problem

    Get PDF
    Trabajo presentado a la 25th British Machine Vision Conference (BMVC), celebrada en Nottingham (UK) del 1 al 5 de septiembre de 2014.-- Este ítem (excepto textos e imágenes no creados por el autor) está sujeto a una licencia de Creative Commons: Attribution-NonCommercial-NoDerivs 3.0 Spain.We propose a real-time and accurate solution to the Perspective-n-Point (PnP) problem --estimating the pose of a calibrated camera from n 3D-to-2D point correspondences-- that exploits the fact that in practice the 2D position of not all 2D features is estimated with the same accuracy. Assuming a model of such feature uncertainties is known in advance, we reformulate the PnP problem as a maximum likelihood minimization approximated by an unconstrained Sampson error function, which naturally penalizes the most noisy correspondences. The advantages of this approach are clearly demonstrated in synthetic experiments where feature uncertainties are exactly known. Pre-estimating the features uncertainties in real experiments is, though, not easy. In this paper we model feature uncertainty as 2D Gaussian distributions representing the sensitivity of the 2D feature detectors to different camera viewpoints. When using these noise models with our PnP formulation we still obtain promising pose estimation results that outperform the most recent approaches.This work has been partially funded by Spanish government under projects DPI2011-27510, IPT-2012-0630-020000, IPT-2011-1015-430000 and CICYT grant TIN2012-39203; by the EU project ARCAS FP7-ICT-2011-28761; and by the ERA-Net Chistera project ViSen PCIN-2013-047.Peer Reviewe
    • …
    corecore