636 research outputs found

    Curvy surface conformal ultra-thin transfer printed Si optoelectronic penetrating microprobe arrays

    Get PDF
    Penetrating neural probe arrays are powerful bio-integrated devices for studying basic neuroscience and applied neurophysiology, underlying neurological disorders, and understanding and regulating animal and human behavior. This paper presents a penetrating microprobe array constructed in thin and flexible fashion, which can be seamlessly integrated with the soft curvy substances. The function of the microprobes is enabled by transfer printed ultra-thin Si optoelectronics. As a proof-of-concept device, microprobe array with Si photodetector arrays are demonstrated and their capability of mapping the photo intensity in space are illustrated. The design strategies of utilizing thin polyimide based microprobes and supporting substrate, and employing the heterogeneously integrated thin optoelectronics are keys to accomplish such a device. The experimental and theoretical investigations illustrate the materials, manufacturing, mechanical and optoelectronic aspects of the device. While this paper primarily focuses on the device platform development, the associated materials, manufacturing technologies, and device design strategy are applicable to more complex and multi-functionalities in penetrating probe array-based neural interfaces and can also find potential utilities in a wide range of bio-integrated systems

    Overcoming the Bandwidth-Quantum Efficiency Trade-Off in Conventional Photodetectors

    Get PDF
    Optical systems and microwave photonics applications rely heavily on high-performance photodetectors having a high bandwidth-efficiency product. The main types of photodetector structures include Schottky and PIN-photodiodes, heterojunction phototransistors, avalanche photodetectors, and metal-semiconductor-metal photodetectors. Vertically-illuminated photodetectors intrinsically present bandwidth-efficiency limitations, but these have been mitigated by new innovations over the years in quantum well photodetectors, edge-coupled photodetectors and resonant-cavity enhanced photodetectors for improved photophysical characteristics. Edge-coupled ultra-high-speed photodetectors have yielded high conversion efficiencies, and the active device structure of resonant-cavity-enhanced photodetectors allows wavelength selectivity and optical field enhancement due to resonance, enabling photodetectors to be made thinner and hence faster, while simultaneously increasing the quantum efficiency at the resonant wavelengths. Single-photon avalanche diodes have been developed, which combine an ultimate sensitivity with excellent timing accuracy. Further advances in addressing the bandwidth-quantum efficiency trade-off have incorporated photon-trapping nanostructures and plasmonic nanoparticles. Nanowire photodetectors have also demonstrated the highest photophysical performance to date

    High accuracy transfer printing of single-mode membrane silicon photonic devices

    Get PDF
    A transfer printing (TP) method is presented for the micro-assembly of integrated photonic devices from suspended membrane components. Ultra thin membranes with thickness of 150nm are directly printed without the use of mechanical support and adhesion layers. By using a correlation alignment scheme vertical integration of single-mode silicon waveguides is achieved with an average placement accuracy of 100±70nm. Silicon (Si) μ-ring resonators are also fabricated and show controllable optical coupling by varying the lateral absolute position to an underlying Si bus waveguide

    Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits

    Get PDF
    In this paper, we review our work on efficient interfaces between a silicon-on-insulator photonic IC and a single-mode optical fiber based on grating structures. Several device configurations are presented that provide high efficiency, polarization insensitive, and broadband optical coupling on a small footprint. The high alignment tolerance and the fact that the optical fiber interface is out-of-plane provide opportunities for easy packaging and wafer-scale testing of the photonic IC. Finally, an optical probe based on a grating structure defined on the fiber facet is described

    Light coupling between vertical III-As nanowires and planar Si photonic waveguides for the monolithic integration of active optoelectronic devices on a Si platform

    Get PDF
    We present a new concept for the optical interfacing between vertical III-As nanowires and planar Si waveguides. The nanowires are arranged in a two-dimensional array which forms a grating structure on top of the waveguide. This grating enables light coupling in both directions between the components made from the two different material classes. Numerical simulations show that this concept permits a light extraction efficiency from the waveguide larger than 45% and a light insertion efficiency larger than 35%. This new approach would allow the monolithic integration of nanowire-based active optoelectronics devices, like photodetectors and light sources, on the Si photonics platform

    Silicon photonics for optical fiber communication

    Get PDF
    corecore