1,857 research outputs found

    Advancing Aircraft Operations in a Net-Centric Environment with the Incorporation of Increasingly Autonomous Systems and Human Teaming

    Get PDF
    NextGen has begun the modernization of the nations air transportation system, with goals to improve system safety, increase operation efficiency and capacity, provide enhanced predictability, resilience and robustness. With these improvements, NextGen is poised to handle significant increases in air traffic operations, more than twice the number recorded in 2016, by 2025.1 NextGen is evolving toward collaborative decision-making across many agents, including automation, by use of a Net-Centric architecture, which in itself creates a very complex environment in which the navigation and operation of aircraft are to take place. An intricate environment such as this, coupled with the expected upsurge of air traffic operations generates concern respecting the ability of the human-agent to both fly and manage aircraft within. Therefore, it is both necessary and practical to begin the process of increasingly autonomous systems within the cockpit that will act independently to assist the human-agent achieve the overall goal of NextGen. However, the straightforward technological development and implementation of intelligent machines into the cockpit is only part of what is necessary to maintain, at minimum, or improve human-agent functionality, as desired, while operating in NextGen. The full integration of Increasingly Autonomous Systems (IAS) within the cockpit can only be accomplished when the IAS works in concert with the human, formulating trust between the two, thereby establishing a team atmosphere. Imperative to cockpit implementation is ensuring the proper performance of the IAS by the development team and the human-agent with which it will be paired when given a specific piloting, navigation, or observational task. Described in this paper are the steps taken, at NASA Langley Research Center, during the second and third phases of the development of an IAS, the Traffic Data Manager (TDM), its verification and validation by human-agents, and the foundational development of Human Autonomy Teaming (HAT) between the two

    Simple but Not Simplistic: Reducing the Complexity of Machine Learning Methods

    Get PDF
    Programa Oficial de Doutoramento en Computación . 5009V01[Resumo] A chegada do Big Data e a explosión do Internet das cousas supuxeron un gran reto para os investigadores en Aprendizaxe Automática, facendo que o proceso de aprendizaxe sexa mesmo roáis complexo. No mundo real, os problemas da aprendizaxe automática xeralmente teñen complexidades inherentes, como poden ser as características intrínsecas dos datos, o gran número de mostras, a alta dimensión dos datos de entrada, os cambios na distribución entre o conxunto de adestramento e test, etc. Todos estes aspectos son importantes, e requiren novoS modelos que poi dan facer fronte a estas situacións. Nesta tese, abordáronse todos estes problemas, tratando de simplificar o proceso de aprendizaxe automática no escenario actual. En primeiro lugar, realízase unha análise de complexidade para observar como inflúe esta na tarefa de clasificación, e se é posible que a aplicación dun proceso previo de selección de características reduza esta complexidade. Logo, abórdase o proceso de simplificación da fase de aprendizaxe automática mediante a filosofía divide e vencerás, usando un enfoque distribuído. Seguidamente, aplicamos esa mesma filosofía sobre o proceso de selección de características. Finalmente, optamos por un enfoque diferente seguindo a filosofía do Edge Computing, a cal permite que os datos producidos polos dispositivos do Internet das cousas se procesen máis preto de onde se crearon. Os enfoques propostos demostraron a súa capacidade para reducir a complexidade dos métodos de aprendizaxe automática tradicionais e, polo tanto, espérase que a contribución desta tese abra as portas ao desenvolvemento de novos métodos de aprendizaxe máquina máis simples, máis robustos, e máis eficientes computacionalmente.[Resumen] La llegada del Big Data y la explosión del Internet de las cosas han supuesto un gran reto para los investigadores en Aprendizaje Automático, haciendo que el proceso de aprendizaje sea incluso más complejo. En el mundo real, los problemas de aprendizaje automático generalmente tienen complejidades inherentes) como pueden ser las características intrínsecas de los datos, el gran número de muestras, la alta dimensión de los datos de entrada, los cambios en la distribución entre el conjunto de entrenamiento y test, etc. Todos estos aspectos son importantes, y requieren nuevos modelos que puedan hacer frente a estas situaciones. En esta tesis, se han abordado todos estos problemas, tratando de simplificar el proceso de aprendizaje automático en el escenario actual. En primer lugar, se realiza un análisis de complejidad para observar cómo influye ésta en la tarea de clasificación1 y si es posible que la aplicación de un proceso previo de selección de características reduzca esta complejidad. Luego, se aborda el proceso de simplificación de la fase de aprendizaje automático mediante la filosofía divide y vencerás, usando un enfoque distribuido. A continuación, aplicamos esa misma filosofía sobre el proceso de selección de características. Finalmente, optamos por un enfoque diferente siguiendo la filosofía del Edge Computing, la cual permite que los datos producidos por los dispositivos del Internet de las cosas se procesen más cerca de donde se crearon. Los enfoques propuestos han demostrado su capacidad para reducir la complejidad de los métodos de aprendizaje automático tnidicionales y, por lo tanto, se espera que la contribución de esta tesis abra las puertas al desarrollo de nuevos métodos de aprendizaje máquina más simples, más robustos, y más eficientes computacionalmente.[Abstract] The advent of Big Data and the explosion of the Internet of Things, has brought unprecedented challenges to Machine Learning researchers, making the learning task more complexo Real-world machine learning problems usually have inherent complexities, such as the intrinsic characteristics of the data, large number of instauces, high input dimensionality, dataset shift, etc. AH these aspects matter, and can fOI new models that can confront these situations. Thus, in this thesis, we have addressed aH these issues) simplifying the machine learning process in the current scenario. First, we carry out a complexity analysis to see how it inftuences the classification models, and if it is possible that feature selection might result in a deerease of that eomplexity. Then, we address the proeess of simplifying learning with the divide-and-conquer philosophy of the distributed approaeh. Later, we aim to reduce the complexity of the feature seleetion preprocessing through the same philosophy. FinallYl we opt for a different approaeh following the eurrent philosophy Edge eomputing, whieh allows the data produeed by Internet of Things deviees to be proeessed closer to where they were ereated. The proposed approaehes have demonstrated their eapability to reduce the complexity of traditional maehine learning algorithms, and thus it is expeeted that the eontribution of this thesis will open the doors to the development of new maehine learning methods that are simpler, more robust, and more eomputationally efficient

    Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields

    Full text link
    This work presents a first evaluation of using spatio-temporal receptive fields from a recently proposed time-causal spatio-temporal scale-space framework as primitives for video analysis. We propose a new family of video descriptors based on regional statistics of spatio-temporal receptive field responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain and from object recognition to dynamic texture recognition. The time-recursive formulation enables computationally efficient time-causal recognition. The experimental evaluation demonstrates competitive performance compared to state-of-the-art. Especially, it is shown that binary versions of our dynamic texture descriptors achieve improved performance compared to a large range of similar methods using different primitives either handcrafted or learned from data. Further, our qualitative and quantitative investigation into parameter choices and the use of different sets of receptive fields highlights the robustness and flexibility of our approach. Together, these results support the descriptive power of this family of time-causal spatio-temporal receptive fields, validate our approach for dynamic texture recognition and point towards the possibility of designing a range of video analysis methods based on these new time-causal spatio-temporal primitives.Comment: 29 pages, 16 figure
    • …
    corecore