11 research outputs found

    EUNADICS-AV early warning system dedicated to supporting aviation in the case of a crisis from natural airborne hazards and radionuclide clouds

    Get PDF
    The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986, last access: 5 November 2021). The alert products developed by the EUNADICS-AV EWS, i.e. near-real-time (NRT) observations, email notifications and netCDF (Network Common Data Form) alert data products (called NCAP files), have shown significant interest in using selective detection of natural airborne hazards from polar-orbiting satellites. The combination of several sensors inside a single global system demonstrates the advantage of using a triggered approach to obtain selective detection from observations, which cannot initially discriminate the different aerosol types. Satellite products from hyperspectral ultraviolet–visible (UV–vis) and infrared (IR) sensors (e.g. TROPOMI – TROPOspheric Monitoring Instrument – and IASI – Infrared Atmospheric Sounding Interferometer) and a broadband geostationary imager (Spinning Enhanced Visible and InfraRed Imager; SEVIRI) and retrievals from ground-based networks (e.g. EARLINET – European Aerosol Research Lidar Network, E-PROFILE and the regional network from volcano observatories) are combined by our system to create tailored alert products (e.g. selective ash detection, SO2 column and plume height, dust cloud, and smoke from wildfires). A total of 23 different alert products are implemented, using 1 geostationary and 13 polar-orbiting satellite platforms, 3 external existing service, and 2 EU and 2 regional ground-based networks. This allows for the identification and the tracking of extreme events. The EUNADICS-AV EWS has also shown the need to implement a future relay of radiological data (gamma dose rate and radionuclides concentrations in ground-level air) in the case of a nuclear accident. This highlights the interest of operating early warnings with the use of a homogenised dataset. For the four types of airborne hazard, the EUNADICS-AV EWS has demonstrated its capability to provide NRT alert data products to trigger data assimilation and dispersion modelling providing forecasts and inverse modelling for source term estimate. Not all of our alert data products (NCAP files) are publicly disseminated. Access to our alert products is currently restricted to key users (i.e. Volcanic Ash Advisory Centres, national meteorological services, the World Meteorological Organization, governments, volcano observatories and research collaborators), as these are considered pre-decisional products. On the other hand, thanks to the EUNADICS-AV–SACS (Support to Aviation Control Service) web interface (https://sacs.aeronomie.be, last access: 5 November 2021), the main part of the satellite observations used by the EUNADICS-AV EWS is shown in NRT, with public email notification of volcanic emission and delivery of tailored images and NCAP files. All of the ATM stakeholders (e.g. pilots, airlines and passengers) can access these alert products through this free channel.Peer ReviewedArticle escrit per 46 autors/es: Hugues Brenot Nicolas Theys Lieven Clarisse Jeroen van Gent Daniel Hurtmans Sophie Vandenbussche Nikolaos Papagiannopoulos Lucia Mona Timo Virtanen Andreas Uppstu Mikhail Sofiev Luca Bugliaro Margarita Vázquez-Navarro Pascal Hedelt Michelle Maree Parks Sara Barsotti Mauro Coltelli William Moreland Simona Scollo Giuseppe Salerno Delia Arnold-Arias Marcus Hirtl Tuomas Peltonen Juhani Lahtinen Klaus Sievers Florian Lipok Rolf Rüfenacht Alexander Haefele Maxime Hervo Saskia Wagenaar Wim Som de Cerff Jos de Laat Arnoud Apituley Piet Stammes Quentin Laffineur Andy Delcloo Robertson Lennart Carl-Herbert Rokitansky Arturo Vargas Markus Kerschbaum Christian Resch Raimund Zopp Matthieu Plu 1 Vincent-Henri Peuch Michel van Roozendael Gerhard WotawaPostprint (author's final draft

    Effects of forest fire smoke and volcanism on the stratospheric aerosol

    Get PDF
    This thesis explores the stratospheric aerosol through both in-situ measurements and remote sensing. The background stratospheric aerosol is complex and is perturbed by injections of forest fire smoke particles and by particles formed from volcanic SO2. Climate models need accurate description of the stratospheric aerosol in order to have sound radiation budgets. Using the remote sensing technique of satellite borne lidar, it was seen that volcanic eruptions increased the stratospheric optical depth on average by 40 % in the period between 2006 and 2015. Forest fires also increased the stratospheric optical depth but their effect was found to disappear faster than the effect from volcanic eruptions. By investigating in-situ samples, the background aerosol was found to contain a carbonaceous fraction that seems to be produced in the stratosphere. In order to better portray fresh volcanic emissions of SO2, a new method of compiling SO2 datasets with high vertical resolution was developed. This method combined many lidar observations of the aerosol formed from SO2 to provide vertical distributions of the SO2 gas. The lidar used in this thesis is CALIOP which is aboard the CALIPSO satellite. The satellite was launched in 2006 and CALIOP is still operational. This lidar measures the radiation scattering from the aerosol at a high vertical resolution. Measurement of elemental concentrations and other in-situ measurements were done using the IAGOS-CARIBIC aircraft platform. Both CALIOP and IAGOS-CARIBIC have long successful histories of measurements which allowed long-term effects to be studied. A comparison between the in-situ measurements from IAGOS-CARIBIC and the remote sensing measurements by CALIOP was also made. If the measurements are taken sufficiently above the tropopause, then the calculated scattering based on in-situ IAGOS-CARIBIC measurements of sulphur, water and carbon are similar to the scattering measured by CALIOP. In the vicinity of the tropopause, additional aerosol components and water uptake are needed to explain the scattering from stratospheric aerosol

    The Ozone Monitoring Instrument: Overview of 14 years in space

    Get PDF
    This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI) on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout) and near real-time (NRT) availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain

    Vertical Profiling of Volcanic Ash from the 2011 Puyehue CordĂłn Caulle Eruption Using IASI

    Get PDF
    Volcanic ash is emitted by most eruptions, sometimes reaching the stratosphere. In addition to its climate effect, ash may have a significant impact on civilian flights. Currently, the horizontal distribution of ash aerosols is quite extensively studied, but not its vertical profile, while of high importance for both applications mentioned. Here, we study the sensitivity of the thermal infrared spectral range to the altitude distribution of volcanic ash, based on similar work that was undertaken on mineral dust. We use measurements by the Infrared Atmospheric Sounding Interferometer (IASI) instruments onboard the MetOp satellite series. The retrieval method that we develop for the ash vertical profile is based on the optimal estimation formalism. This method is applied to study the eruption of the Chilean volcano Puyehue, which started on the 4th of June 2011. The retrieved profiles agree reasonably well with Cloud-Aerosol LiDAR with Orthogonal Polarization (CALIOP) measurements, and our results generally agree with literature studies of the same eruption. The retrieval strategy presented here therefore is very promising for improving our knowledge of the vertical distribution of volcanic ash and obtaining a global 3D ash distribution twice a day. Future improvements of our retrieval strategy are also discussed

    Vertical Profiling of Volcanic Ash from the 2011 Puyehue CordĂłn Caulle Eruption Using IASI

    No full text
    Volcanic ash is emitted by most eruptions, sometimes reaching the stratosphere. In addition to its climate effect, ash may have a significant impact on civilian flights. Currently, the horizontal distribution of ash aerosols is quite extensively studied, but not its vertical profile, while of high importance for both applications mentioned. Here, we study the sensitivity of the thermal infrared spectral range to the altitude distribution of volcanic ash, based on similar work that was undertaken on mineral dust. We use measurements by the Infrared Atmospheric Sounding Interferometer (IASI) instruments onboard the MetOp satellite series. The retrieval method that we develop for the ash vertical profile is based on the optimal estimation formalism. This method is applied to study the eruption of the Chilean volcano Puyehue, which started on the 4th of June 2011. The retrieved profiles agree reasonably well with Cloud-Aerosol LiDAR with Orthogonal Polarization (CALIOP) measurements, and our results generally agree with literature studies of the same eruption. The retrieval strategy presented here therefore is very promising for improving our knowledge of the vertical distribution of volcanic ash and obtaining a global 3D ash distribution twice a day. Future improvements of our retrieval strategy are also discussed
    corecore