120 research outputs found

    On Cayley digraphs that do not have hamiltonian paths

    Full text link
    We construct an infinite family of connected, 2-generated Cayley digraphs Cay(G;a,b) that do not have hamiltonian paths, such that the orders of the generators a and b are arbitrarily large. We also prove that if G is any finite group with |[G,G]| < 4, then every connected Cayley digraph on G has a hamiltonian path (but the conclusion does not always hold when |[G,G]| = 4 or 5).Comment: 10 pages, plus 14-page appendix of notes to aid the refere

    Hamiltonian cycles in Cayley graphs of imprimitive complex reflection groups

    Full text link
    Generalizing a result of Conway, Sloane, and Wilkes for real reflection groups, we show the Cayley graph of an imprimitive complex reflection group with respect to standard generating reflections has a Hamiltonian cycle. This is consistent with the long-standing conjecture that for every finite group, G, and every set of generators, S, of G the undirected Cayley graph of G with respect to S has a Hamiltonian cycle.Comment: 15 pages, 4 figures; minor revisions according to referee comments, to appear in Discrete Mathematic

    Partitioning de Bruijn Graphs into Fixed-Length Cycles for Robot Identification and Tracking

    Full text link
    We propose a new camera-based method of robot identification, tracking and orientation estimation. The system utilises coloured lights mounted in a circle around each robot to create unique colour sequences that are observed by a camera. The number of robots that can be uniquely identified is limited by the number of colours available, qq, the number of lights on each robot, kk, and the number of consecutive lights the camera can see, \ell. For a given set of parameters, we would like to maximise the number of robots that we can use. We model this as a combinatorial problem and show that it is equivalent to finding the maximum number of disjoint kk-cycles in the de Bruijn graph dB(q,)\text{dB}(q,\ell). We provide several existence results that give the maximum number of cycles in dB(q,)\text{dB}(q,\ell) in various cases. For example, we give an optimal solution when k=q1k=q^{\ell-1}. Another construction yields many cycles in larger de Bruijn graphs using cycles from smaller de Bruijn graphs: if dB(q,)\text{dB}(q,\ell) can be partitioned into kk-cycles, then dB(q,)\text{dB}(q,\ell) can be partitioned into tktk-cycles for any divisor tt of kk. The methods used are based on finite field algebra and the combinatorics of words.Comment: 16 pages, 4 figures. Accepted for publication in Discrete Applied Mathematic

    Recent trends and future directions in vertex-transitive graphs

    Get PDF
    A graph is said to be vertex-transitive if its automorphism group acts transitively on the vertex set. Some recent developments and possible future directions regarding two famous open problems, asking about existence of Hamilton paths and existence of semiregular automorphisms in vertex-transitive graphs, are discussed, together with some recent results on arc-transitive graphs and half-arc-transitive graphs, two special classes of vertex-transitive graphs that have received particular attention over the last decade
    corecore