8,761 research outputs found

    Computing Graph Roots Without Short Cycles

    Get PDF
    Graph G is the square of graph H if two vertices x, y have an edge in G if and only if x, y are of distance at most two in H. Given H it is easy to compute its square H2, however Motwani and Sudan proved that it is NP-complete to determine if a given graph G is the square of some graph H (of girth 3). In this paper we consider the characterization and recognition problems of graphs that are squares of graphs of small girth, i.e. to determine if G = H2 for some graph H of small girth. The main results are the following. - There is a graph theoretical characterization for graphs that are squares of some graph of girth at least 7. A corollary is that if a graph G has a square root H of girth at least 7 then H is unique up to isomorphism. - There is a polynomial time algorithm to recognize if G = H2 for some graph H of girth at least 6. - It is NP-complete to recognize if G = H2 for some graph H of girth 4. These results almost provide a dichotomy theorem for the complexity of the recognition problem in terms of girth of the square roots. The algorithmic and graph theoretical results generalize previous results on tree square roots, and provide polynomial time algorithms to compute a graph square root of small girth if it exists. Some open questions and conjectures will also be discussed

    Walking Through Waypoints

    Full text link
    We initiate the study of a fundamental combinatorial problem: Given a capacitated graph G=(V,E)G=(V,E), find a shortest walk ("route") from a source s∈Vs\in V to a destination t∈Vt\in V that includes all vertices specified by a set W⊆V\mathscr{W}\subseteq V: the \emph{waypoints}. This waypoint routing problem finds immediate applications in the context of modern networked distributed systems. Our main contribution is an exact polynomial-time algorithm for graphs of bounded treewidth. We also show that if the number of waypoints is logarithmically bounded, exact polynomial-time algorithms exist even for general graphs. Our two algorithms provide an almost complete characterization of what can be solved exactly in polynomial-time: we show that more general problems (e.g., on grid graphs of maximum degree 3, with slightly more waypoints) are computationally intractable

    Finding an induced subdivision of a digraph

    Get PDF
    We consider the following problem for oriented graphs and digraphs: Given an oriented graph (digraph) GG, does it contain an induced subdivision of a prescribed digraph DD? The complexity of this problem depends on DD and on whether GG must be an oriented graph or is allowed to contain 2-cycles. We give a number of examples of polynomial instances as well as several NP-completeness proofs

    Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies

    Get PDF
    We settle a problem of Havel by showing that there exists an absolute constant d such that if G is a planar graph in which every two distinct triangles are at distance at least d, then G is 3-colorable. In fact, we prove a more general theorem. Let G be a planar graph, and let H be a set of connected subgraphs of G, each of bounded size, such that every two distinct members of H are at least a specified distance apart and all triangles of G are contained in \bigcup{H}. We give a sufficient condition for the existence of a 3-coloring phi of G such that for every B\in H, the restriction of phi to B is constrained in a specified way.Comment: 26 pages, no figures. Updated presentatio

    Hamilton cycles in hypergraphs below the Dirac threshold

    Get PDF
    We establish a precise characterisation of 44-uniform hypergraphs with minimum codegree close to n/2n/2 which contain a Hamilton 22-cycle. As an immediate corollary we identify the exact Dirac threshold for Hamilton 22-cycles in 44-uniform hypergraphs. Moreover, by derandomising the proof of our characterisation we provide a polynomial-time algorithm which, given a 44-uniform hypergraph HH with minimum codegree close to n/2n/2, either finds a Hamilton 22-cycle in HH or provides a certificate that no such cycle exists. This surprising result stands in contrast to the graph setting, in which below the Dirac threshold it is NP-hard to determine if a graph is Hamiltonian. We also consider tight Hamilton cycles in kk-uniform hypergraphs HH for k≥3k \geq 3, giving a series of reductions to show that it is NP-hard to determine whether a kk-uniform hypergraph HH with minimum degree δ(H)≥12∣V(H)∣−O(1)\delta(H) \geq \frac{1}{2}|V(H)| - O(1) contains a tight Hamilton cycle. It is therefore unlikely that a similar characterisation can be obtained for tight Hamilton cycles.Comment: v2: minor revisions in response to reviewer comments, most pseudocode and details of the polynomial time reduction moved to the appendix which will not appear in the printed version of the paper. To appear in Journal of Combinatorial Theory, Series
    • …
    corecore