5,380 research outputs found

    Distributed Time-Sensitive Task Selection in Mobile Crowdsensing

    Full text link
    With the rich set of embedded sensors installed in smartphones and the large number of mobile users, we witness the emergence of many innovative commercial mobile crowdsensing applications that combine the power of mobile technology with crowdsourcing to deliver time-sensitive and location-dependent information to their customers. Motivated by these real-world applications, we consider the task selection problem for heterogeneous users with different initial locations, movement costs, movement speeds, and reputation levels. Computing the social surplus maximization task allocation turns out to be an NP-hard problem. Hence we focus on the distributed case, and propose an asynchronous and distributed task selection (ADTS) algorithm to help the users plan their task selections on their own. We prove the convergence of the algorithm, and further characterize the computation time for users' updates in the algorithm. Simulation results suggest that the ADTS scheme achieves the highest Jain's fairness index and coverage comparing with several benchmark algorithms, while yielding similar user payoff to a greedy centralized benchmark. Finally, we illustrate how mobile users coordinate under the ADTS scheme based on some practical movement time data derived from Google Maps

    An Optimal Game Theoretical Framework for Mobility Aware Routing in Mobile Ad hoc Networks

    Full text link
    Selfish behaviors are common in self-organized Mobile Ad hoc Networks (MANETs) where nodes belong to different authorities. Since cooperation of nodes is essential for routing protocols, various methods have been proposed to stimulate cooperation among selfish nodes. In order to provide sufficient incentives, most of these methods pay nodes a premium over their actual costs of participation. However, they lead to considerably large overpayments. Moreover, existing methods ignore mobility of nodes, for simplicity. However, owing to the mobile nature of MANETs, this assumption seems unrealistic. In this paper, we propose an optimal game theoretical framework to ensure the proper cooperation in mobility aware routing for MANETs. The proposed method is based on the multi-dimensional optimal auctions which allows us to consider path durations, in addition to the route costs. Path duration is a metric that best reflects changes in topology caused by mobility of nodes and, it is widely used in mobility aware routing protocols. Furthermore, the proposed mechanism is optimal in that it minimizes the total expected payments. We provide theoretical analysis to support our claims. In addition, simulation results show significant improvements in terms of payments compared to the most popular existing methods

    A Survey of Techniques for Improving Security of GPUs

    Full text link
    Graphics processing unit (GPU), although a powerful performance-booster, also has many security vulnerabilities. Due to these, the GPU can act as a safe-haven for stealthy malware and the weakest `link' in the security `chain'. In this paper, we present a survey of techniques for analyzing and improving GPU security. We classify the works on key attributes to highlight their similarities and differences. More than informing users and researchers about GPU security techniques, this survey aims to increase their awareness about GPU security vulnerabilities and potential countermeasures
    corecore