1,240 research outputs found

    Bad News for Chordal Partitions

    Full text link
    Reed and Seymour [1998] asked whether every graph has a partition into induced connected non-empty bipartite subgraphs such that the quotient graph is chordal. If true, this would have significant ramifications for Hadwiger's Conjecture. We prove that the answer is `no'. In fact, we show that the answer is still `no' for several relaxations of the question

    On Tree-Partition-Width

    Get PDF
    A \emph{tree-partition} of a graph GG is a proper partition of its vertex set into `bags', such that identifying the vertices in each bag produces a forest. The \emph{tree-partition-width} of GG is the minimum number of vertices in a bag in a tree-partition of GG. An anonymous referee of the paper by Ding and Oporowski [\emph{J. Graph Theory}, 1995] proved that every graph with tree-width k≥3k\geq3 and maximum degree Δ≥1\Delta\geq1 has tree-partition-width at most 24kΔ24k\Delta. We prove that this bound is within a constant factor of optimal. In particular, for all k≥3k\geq3 and for all sufficiently large Δ\Delta, we construct a graph with tree-width kk, maximum degree Δ\Delta, and tree-partition-width at least (\eighth-\epsilon)k\Delta. Moreover, we slightly improve the upper bound to 5/2(k+1)(7/2Δ−1){5/2}(k+1)({7/2}\Delta-1) without the restriction that k≥3k\geq3

    Colouring exact distance graphs of chordal graphs

    Full text link
    For a graph G=(V,E)G=(V,E) and positive integer pp, the exact distance-pp graph G[♮p]G^{[\natural p]} is the graph with vertex set VV and with an edge between vertices xx and yy if and only if xx and yy have distance pp. Recently, there has been an effort to obtain bounds on the chromatic number χ(G[♮p])\chi(G^{[\natural p]}) of exact distance-pp graphs for GG from certain classes of graphs. In particular, if a graph GG has tree-width tt, it has been shown that χ(G[♮p])∈O(pt−1)\chi(G^{[\natural p]}) \in \mathcal{O}(p^{t-1}) for odd pp, and χ(G[♮p])∈O(ptΔ(G))\chi(G^{[\natural p]}) \in \mathcal{O}(p^{t}\Delta(G)) for even pp. We show that if GG is chordal and has tree-width tt, then χ(G[♮p])∈O(p t2)\chi(G^{[\natural p]}) \in \mathcal{O}(p\, t^2) for odd pp, and χ(G[♮p])∈O(p t2Δ(G))\chi(G^{[\natural p]}) \in \mathcal{O}(p\, t^2 \Delta(G)) for even pp. If we could show that for every graph HH of tree-width tt there is a chordal graph GG of tree-width tt which contains HH as an isometric subgraph (i.e., a distance preserving subgraph), then our results would extend to all graphs of tree-width tt. While we cannot do this, we show that for every graph HH of genus gg there is a graph GG which is a triangulation of genus gg and contains HH as an isometric subgraph.Comment: 11 pages, 2 figures. Versions 2 and 3 include minor changes, which arise from reviewers' comment

    Dichotomy for tree-structured trigraph list homomorphism problems

    Get PDF
    Trigraph list homomorphism problems (also known as list matrix partition problems) have generated recent interest, partly because there are concrete problems that are not known to be polynomial time solvable or NP-complete. Thus while digraph list homomorphism problems enjoy dichotomy (each problem is NP-complete or polynomial time solvable), such dichotomy is not necessarily expected for trigraph list homomorphism problems. However, in this paper, we identify a large class of trigraphs for which list homomorphism problems do exhibit a dichotomy. They consist of trigraphs with a tree-like structure, and, in particular, include all trigraphs whose underlying graphs are trees. In fact, we show that for these tree-like trigraphs, the trigraph list homomorphism problem is polynomially equivalent to a related digraph list homomorphism problem. We also describe a few examples illustrating that our conditions defining tree-like trigraphs are not unnatural, as relaxing them may lead to harder problems

    Unique perfect phylogeny is NP-hard

    Full text link
    We answer, in the affirmative, the following question proposed by Mike Steel as a $100 challenge: "Is the following problem NP-hard? Given a ternary phylogenetic X-tree T and a collection Q of quartet subtrees on X, is T the only tree that displays Q ?

    Partitioning Perfect Graphs into Stars

    Full text link
    The partition of graphs into "nice" subgraphs is a central algorithmic problem with strong ties to matching theory. We study the partitioning of undirected graphs into same-size stars, a problem known to be NP-complete even for the case of stars on three vertices. We perform a thorough computational complexity study of the problem on subclasses of perfect graphs and identify several polynomial-time solvable cases, for example, on interval graphs and bipartite permutation graphs, and also NP-complete cases, for example, on grid graphs and chordal graphs.Comment: Manuscript accepted to Journal of Graph Theor
    • …
    corecore