88 research outputs found

    Perfect domination in regular grid graphs

    Full text link
    We show there is an uncountable number of parallel total perfect codes in the integer lattice graph Λ{\Lambda} of R2\R^2. In contrast, there is just one 1-perfect code in Λ{\Lambda} and one total perfect code in Λ{\Lambda} restricting to total perfect codes of rectangular grid graphs (yielding an asymmetric, Penrose, tiling of the plane). We characterize all cycle products Cm×CnC_m\times C_n with parallel total perfect codes, and the dd-perfect and total perfect code partitions of Λ{\Lambda} and Cm×CnC_m\times C_n, the former having as quotient graph the undirected Cayley graphs of Z2d2+2d+1\Z_{2d^2+2d+1} with generator set {1,2d2}\{1,2d^2\}. For r>1r>1, generalization for 1-perfect codes is provided in the integer lattice of Rr\R^r and in the products of rr cycles, with partition quotient graph K2r+1K_{2r+1} taken as the undirected Cayley graph of Z2r+1\Z_{2r+1} with generator set {1,...,r}\{1,...,r\}.Comment: 16 pages; 11 figures; accepted for publication in Austral. J. Combi

    Acyclic Colouring of Graphs on Surfaces

    Get PDF
    An acyclic k-colouring of a graph G is a proper k-colouring of G with no bichromatic cycles. In 1979, Borodin proved that planar graphs are acyclically 5-colourable, an analog of the Four Colour Theorem. Kawarabayashi and Mohar proved in 2010 that "locally" planar graphs are acyclically 7-colourable, an analog of Thomassen's result that "locally" planar graphs are 5-colourable. We say that a graph G is critical for (acyclic) k-colouring if G is not (acyclically) k-colourable, but all proper subgraphs of G are. In 1997, Thomassen proved that for every k >= 5 and every surface S, there are only finitely many graphs that embed in S that are critical for k-colouring. Here we prove the analogous result that for each k >= 12 and each surface S, there are finitely many graphs embeddable on S that are critical for acyclic k-colouring. This result implies that there exists a linear time algorithm that, given a surface S and large enough k, decides whether a graph embedded in S is acyclically k-colourable

    On the swap-distances of different realizations of a graphical degree sequence

    Get PDF
    One of the first graph theoretical problems which got serious attention (already in the fifties of the last century) was to decide whether a given integer sequence is equal to the degree sequence of a simple graph (or it is {\em graphical} for short). One method to solve this problem is the greedy algorithm of Havel and Hakimi, which is based on the {\em swap} operation. Another, closely related question is to find a sequence of swap operations to transform one graphical realization into another one of the same degree sequence. This latter problem got particular emphases in connection of fast mixing Markov chain approaches to sample uniformly all possible realizations of a given degree sequence. (This becomes a matter of interest in connection of -- among others -- the study of large social networks.) Earlier there were only crude upper bounds on the shortest possible length of such swap sequences between two realizations. In this paper we develop formulae (Gallai-type identities) for these {\em swap-distance}s of any two realizations of simple undirected or directed degree sequences. These identities improves considerably the known upper bounds on the swap-distances.Comment: to be publishe
    • 

    corecore