72 research outputs found

    GPU Parallel Implementation of Dual-Depth Sparse Probabilistic Latent Semantic Analysis for Hyperspectral Unmixing

    Get PDF
    Hyperspectral unmixing (HU) is an important task for remotely sensed hyperspectral (HS) data exploitation. It comprises the identification of pure spectral signatures (endmembers) and their corresponding fractional abundances in each pixel of the HS data cube. Several methods have been developed for (semi-) supervised and automatic identification of endmembers and abundances. Recently, the statistical dual-depth sparse probabilistic latent semantic analysis (DEpLSA) method has been developed to tackle the HU problem as a latent topic-based approach in which both endmembers and abundances can be simultaneously estimated according to the semantics encapsulated by the latent topic space. However, statistical models usually lead to computationally demanding algorithms and the computational time of the DEpLSA is often too high for practical use, in particular, when the dimensionality of the HS data cube is large. In order to mitigate this limitation, this article resorts to graphical processing units (GPUs) to provide a new parallel version of the DEpLSA, developed using the NVidia compute device unified architecture. Our experimental results, conducted using four well-known HS datasets and two different GPU architectures (GTX 1080 and Tesla P100), show that our parallel versions of the DEpLSA and the traditional pLSA approach can provide accurate HU results fast enough for practical use, accelerating the corresponding serial versions in at least 30x in the GTX 1080 and up to 147x in the Tesla P100 GPU, which are quite significant acceleration factors that increase with the image size, thus allowing for the possibility of the fast processing of massive HS data repositories

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Characterization and Reduction of Noise in Manifold Representations of Hyperspectral Imagery

    Get PDF
    A new workflow to produce dimensionality reduced manifold coordinates based on the improvements of landmark Isometric Mapping (ISOMAP) algorithms using local spectral models is proposed. Manifold space from nonlinear dimensionality reduction better addresses the nonlinearity of the hyperspectral data and often has better per- formance comparing to the results of linear methods such as Minimum Noise Fraction (MNF). The dissertation mainly focuses on using adaptive local spectral models to fur- ther improve the performance of ISOMAP algorithms by addressing local noise issues and perform guided landmark selection and nearest neighborhood construction in local spectral subsets. This work could benefit the performance of common hyperspectral image analysis tasks, such as classification, target detection, etc., but also keep the computational burden low. This work is based on and improves the previous ENH- ISOMAP algorithm in various ways. The workflow is based on a unified local spectral subsetting framework. Embedding spaces in local spectral subsets as local noise models are first proposed and used to perform noise estimation, MNF regression and guided landmark selection in a local sense. Passive and active methods are proposed and ver- ified to select landmarks deliberately to ensure local geometric structure coverage and local noise avoidance. Then, a novel local spectral adaptive method is used to construct the k-nearest neighbor graph. Finally, a global MNF transformation in the manifold space is also introduced to further compress the signal dimensions. The workflow is implemented using C++ with multiple implementation optimizations, including using heterogeneous computing platforms that are available in personal computers. The re- sults are presented and evaluated by Jeffries-Matsushita separability metric, as well as the classification accuracy of supervised classifiers. The proposed workflow shows sig- nificant and stable improvements over the dimensionality reduction performance from traditional MNF and ENH-ISOMAP on various hyperspectral datasets. The computa- tional speed of the proposed implementation is also improved

    A Novel Methodology for Calculating Large Numbers of Symmetrical Matrices on a Graphics Processing Unit: Towards Efficient, Real-Time Hyperspectral Image Processing

    Get PDF
    Hyperspectral imagery (HSI) is often processed to identify targets of interest. Many of the quantitative analysis techniques developed for this purpose mathematically manipulate the data to derive information about the target of interest based on local spectral covariance matrices. The calculation of a local spectral covariance matrix for every pixel in a given hyperspectral data scene is so computationally intensive that real-time processing with these algorithms is not feasible with today’s general purpose processing solutions. Specialized solutions are cost prohibitive, inflexible, inaccessible, or not feasible for on-board applications. Advances in graphics processing unit (GPU) capabilities and programmability offer an opportunity for general purpose computing with access to hundreds of processing cores in a system that is affordable and accessible. The GPU also offers flexibility, accessibility and feasibility that other specialized solutions do not offer. The architecture for the NVIDIA GPU used in this research is significantly different from the architecture of other parallel computing solutions. With such a substantial change in architecture it follows that the paradigm for programming graphics hardware is significantly different from traditional serial and parallel software development paradigms. In this research a methodology for mapping an HSI target detection algorithm to the NVIDIA GPU hardware and Compute Unified Device Architecture (CUDA) Application Programming Interface (API) is developed. The RX algorithm is chosen as a representative stochastic HSI algorithm that requires the calculation of a spectral covariance matrix. The developed methodology is designed to calculate a local covariance matrix for every pixel in the input HSI data scene. A characterization of the limitations imposed by the chosen GPU is given and a path forward toward optimization of a GPU-based method for real-time HSI data processing is defined

    Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python Package

    Full text link
    Spectral pixels are often a mixture of the pure spectra of the materials, called endmembers, due to the low spatial resolution of hyperspectral sensors, double scattering, and intimate mixtures of materials in the scenes. Unmixing estimates the fractional abundances of the endmembers within the pixel. Depending on the prior knowledge of endmembers, linear unmixing can be divided into three main groups: supervised, semi-supervised, and unsupervised (blind) linear unmixing. Advances in Image processing and machine learning substantially affected unmixing. This paper provides an overview of advanced and conventional unmixing approaches. Additionally, we draw a critical comparison between advanced and conventional techniques from the three categories. We compare the performance of the unmixing techniques on three simulated and two real datasets. The experimental results reveal the advantages of different unmixing categories for different unmixing scenarios. Moreover, we provide an open-source Python-based package available at https://github.com/BehnoodRasti/HySUPP to reproduce the results

    Hyperspectral Remote Sensing Data Analysis and Future Challenges

    Full text link

    Low power compressive sensing for hyperspectral imagery

    Get PDF
    Hyperspectral imaging instruments allow remote Earth exploration by measuring hundreds of spectral bands at very narrow channels of a given spatial area. The resulting hyperspectral data cube typically comprises several gigabytes. Such extremely large volumes of data introduces problems in its transmission to Earth due to limited communication bandwidth. As a result, the applicability of data compression techniques to hyperspectral images have received increasing attention. This paper, presents a study of the power and time consumption of a parallel implementation for a spectral compressive acquisition method on a Jetson TX2 platform. The conducted experiments have been performed to demonstrate the applicability of these methods for onboard processing. The results show that by using this low energy consumption GPU and integer data type is it possible to obtain real-time performance with a very limited power requirement while maintaining the methods accuracy.info:eu-repo/semantics/publishedVersio
    corecore