39 research outputs found

    A collection of open problems in celebration of Imre Leader's 60th birthday

    Full text link
    One of the great pleasures of working with Imre Leader is to experience his infectious delight on encountering a compelling combinatorial problem. This collection of open problems in combinatorics has been put together by a subset of his former PhD students and students-of-students for the occasion of his 60th birthday. All of the contributors have been influenced (directly or indirectly) by Imre: his personality, enthusiasm and his approach to mathematics. The problems included cover many of the areas of combinatorial mathematics that Imre is most associated with: including extremal problems on graphs, set systems and permutations, and Ramsey theory. This is a personal selection of problems which we find intriguing and deserving of being better known. It is not intended to be systematic, or to consist of the most significant or difficult questions in any area. Rather, our main aim is to celebrate Imre and his mathematics and to hope that these problems will make him smile. We also hope this collection will be a useful resource for researchers in combinatorics and will stimulate some enjoyable collaborations and beautiful mathematics

    Extremal Graph Theory and Dimension Theory for Partial Orders

    Get PDF
    This dissertation analyses several problems in extremal combinatorics.In Part I, we study the following problem proposed by Barrus, Ferrara, Vandenbussche, and Wenger. Given a graph H and an integer t, what is the minimum number of coloured edges in a t-edge-coloured graph G on n vertices such that G does not contain a rainbow copy of H, but adding a new edge to G in any colour creates a rainbow copy of H? We determine the growth rates of these numbers for almost all graphs H and all t e(H).In Part II, we study dimension theory for finite partial orders. In Chapter 1, we introduce and define the concepts we use in the succeeding chapters.In Chapter 2, we determine the dimension of the divisibility order on [n] up to a factor of (log log n).In Chapter 3, we answer a question of Kim, Martin, Masak, Shull, Smith, Uzzell, and Wang on the local bipartite covering numbers of difference graphs.In Chapter 4, we prove some bounds on the local dimension of any pair of layers of the Boolean lattice. In particular, we show that the local dimension of the first and middle layers is asymptotically n / log n.In Chapter 5, we introduce a new poset parameter called local t-dimension. We also discuss the fractional variants of this and other dimension-like parameters.All of Part I is joint work with Antnio Giro of the University of Cambridge and Kamil Popielarz of the University of Memphis.Chapter 2 of Part II is joint work with Victor Souza of IMPA (Instituto de Matemtica Pura e Aplicada, Rio de Janeiro).Chapter 3 of Part II is joint work with Antnio Giro

    Global hypercontractivity and its applications

    Get PDF
    The hypercontractive inequality on the discrete cube plays a crucial role in many fundamental results in the Analysis of Boolean functions, such as the KKL theorem, Friedgut's junta theorem and the invariance principle. In these results the cube is equipped with the uniform measure, but it is desirable, particularly for applications to the theory of sharp thresholds, to also obtain such results for general pp-biased measures. However, simple examples show that when p=o(1)p = o(1), there is no hypercontractive inequality that is strong enough. In this paper, we establish an effective hypercontractive inequality for general pp that applies to `global functions', i.e. functions that are not significantly affected by a restriction of a small set of coordinates. This class of functions appears naturally, e.g. in Bourgain's sharp threshold theorem, which states that such functions exhibit a sharp threshold. We demonstrate the power of our tool by strengthening Bourgain's theorem, thereby making progress on a conjecture of Kahn and Kalai and by establishing a pp-biased analog of the invariance principle. Our results have significant applications in Extremal Combinatorics. Here we obtain new results on the Tur\'an number of any bounded degree uniform hypergraph obtained as the expansion of a hypergraph of bounded uniformity. These are asymptotically sharp over an essentially optimal regime for both the uniformity and the number of edges and solve a number of open problems in the area. In particular, we give general conditions under which the crosscut parameter asymptotically determines the Tur\'an number, answering a question of Mubayi and Verstra\"ete. We also apply the Junta Method to refine our asymptotic results and obtain several exact results, including proofs of the Huang--Loh--Sudakov conjecture on cross matchings and the F\"uredi--Jiang--Seiver conjecture on path expansions.Comment: Subsumes arXiv:1906.0556
    corecore