356 research outputs found

    Vertex Ramsey problems in the hypercube

    Get PDF
    If we 2-color the vertices of a large hypercube what monochromatic substructures are we guaranteed to find? Call a set S of vertices from Q_d, the d-dimensional hypercube, Ramsey if any 2-coloring of the vertices of Q_n, for n sufficiently large, contains a monochromatic copy of S. Ramsey's theorem tells us that for any r \geq 1 every 2-coloring of a sufficiently large r-uniform hypergraph will contain a large monochromatic clique (a complete subhypergraph): hence any set of vertices from Q_d that all have the same weight is Ramsey. A natural question to ask is: which sets S corresponding to unions of cliques of different weights from Q_d are Ramsey? The answer to this question depends on the number of cliques involved. In particular we determine which unions of 2 or 3 cliques are Ramsey and then show, using a probabilistic argument, that any non-trivial union of 39 or more cliques of different weights cannot be Ramsey. A key tool is a lemma which reduces questions concerning monochromatic configurations in the hypercube to questions about monochromatic translates of sets of integers.Comment: 26 pages, 3 figure

    An extremal theorem in the hypercube

    Get PDF
    The hypercube Q_n is the graph whose vertex set is {0,1}^n and where two vertices are adjacent if they differ in exactly one coordinate. For any subgraph H of the cube, let ex(Q_n, H) be the maximum number of edges in a subgraph of Q_n which does not contain a copy of H. We find a wide class of subgraphs H, including all previously known examples, for which ex(Q_n, H) = o(e(Q_n)). In particular, our method gives a unified approach to proving that ex(Q_n, C_{2t}) = o(e(Q_n)) for all t >= 4 other than 5.Comment: 6 page

    Designing Networks with Good Equilibria under Uncertainty

    Get PDF
    We consider the problem of designing network cost-sharing protocols with good equilibria under uncertainty. The underlying game is a multicast game in a rooted undirected graph with nonnegative edge costs. A set of k terminal vertices or players need to establish connectivity with the root. The social optimum is the Minimum Steiner Tree. We are interested in situations where the designer has incomplete information about the input. We propose two different models, the adversarial and the stochastic. In both models, the designer has prior knowledge of the underlying metric but the requested subset of the players is not known and is activated either in an adversarial manner (adversarial model) or is drawn from a known probability distribution (stochastic model). In the adversarial model, the designer's goal is to choose a single, universal protocol that has low Price of Anarchy (PoA) for all possible requested subsets of players. The main question we address is: to what extent can prior knowledge of the underlying metric help in the design? We first demonstrate that there exist graphs (outerplanar) where knowledge of the underlying metric can dramatically improve the performance of good network design. Then, in our main technical result, we show that there exist graph metrics, for which knowing the underlying metric does not help and any universal protocol has PoA of Ω(logk)\Omega(\log k), which is tight. We attack this problem by developing new techniques that employ powerful tools from extremal combinatorics, and more specifically Ramsey Theory in high dimensional hypercubes. Then we switch to the stochastic model, where each player is independently activated. We show that there exists a randomized ordered protocol that achieves constant PoA. By using standard derandomization techniques, we produce a deterministic ordered protocol with constant PoA.Comment: This version has additional results about stochastic inpu

    Problems in extremal graph theory

    Get PDF
    We consider a variety of problems in extremal graph and set theory. The {\em chromatic number} of GG, χ(G)\chi(G), is the smallest integer kk such that GG is kk-colorable. The {\it square} of GG, written G2G^2, is the supergraph of GG in which also vertices within distance 2 of each other in GG are adjacent. A graph HH is a {\it minor} of GG if HH can be obtained from a subgraph of GG by contracting edges. We show that the upper bound for χ(G2)\chi(G^2) conjectured by Wegner (1977) for planar graphs holds when GG is a K4K_4-minor-free graph. We also show that χ(G2)\chi(G^2) is equal to the bound only when G2G^2 contains a complete graph of that order. One of the central problems of extremal hypergraph theory is finding the maximum number of edges in a hypergraph that does not contain a specific forbidden structure. We consider as a forbidden structure a fixed number of members that have empty common intersection as well as small union. We obtain a sharp upper bound on the size of uniform hypergraphs that do not contain this structure, when the number of vertices is sufficiently large. Our result is strong enough to imply the same sharp upper bound for several other interesting forbidden structures such as the so-called strong simplices and clusters. The {\em nn-dimensional hypercube}, QnQ_n, is the graph whose vertex set is {0,1}n\{0,1\}^n and whose edge set consists of the vertex pairs differing in exactly one coordinate. The generalized Tur\'an problem asks for the maximum number of edges in a subgraph of a graph GG that does not contain a forbidden subgraph HH. We consider the Tur\'an problem where GG is QnQ_n and HH is a cycle of length 4k+24k+2 with k3k\geq 3. Confirming a conjecture of Erd{\H o}s (1984), we show that the ratio of the size of such a subgraph of QnQ_n over the number of edges of QnQ_n is o(1)o(1), i.e. in the limit this ratio approaches 0 as nn approaches infinity

    Upper bounds on the size of 4- and 6-cycle-free subgraphs of the hypercube

    Full text link
    In this paper we modify slightly Razborov's flag algebra machinery to be suitable for the hypercube. We use this modified method to show that the maximum number of edges of a 4-cycle-free subgraph of the n-dimensional hypercube is at most 0.6068 times the number of its edges. We also improve the upper bound on the number of edges for 6-cycle-free subgraphs of the n-dimensional hypercube from the square root of 2 - 1 to 0.3755 times the number of its edges. Additionally, we show that if the n-dimensional hypercube is considered as a poset, then the maximum vertex density of three middle layers in an induced subgraph without 4-cycles is at most 2.15121 times n choose n/2.Comment: 14 pages, 9 figure
    corecore