12,330 research outputs found

    A platform for semantic web studies

    Get PDF
    The Semantic Web can be seen as a large, heterogeneous network of ontologies and semantic documents. Characterizing these ontologies, the way they relate and the way they are organized can help in better understanding how knowledge is produced and published online. It also provides new ways to explore and exploit this large collection of ontologies. In this paper, we present the foundation of a research platform for characterizing the Semantic Web, relying on the collection of ontologies and the functionalities provided by the Watson Semantic Web search engine. We more specifically focus on formalizing and monitoring relationships between ontologies online, considering a variety of different relations (similarity, versioning, agreement, modularity) and how they can help us obtaining meaningful overviews of the current state of the Semantic Web

    DOOR: towards a formalization of ontology relations

    Get PDF
    In this paper, we describe our ongoing effort in describing and formalizing semantic relations that link ontolo- gies with each others on the Semantic Web in order to create an ontology, DOOR, to represent, manipulate and reason upon these relations. DOOR is a Descriptive Ontology of Ontology Relations which intends to define relations such as inclusion, versioning, similarity and agreement using ontological primitives as well as rules. Here, we provide a detailed description of the methodology used to design the DOOR ontology, as well as an overview of its content. We also describe how DOOR is used in a complete framework (called KANNEL) for detecting and managing semantic relations between ontologies in large ontology repositories. Applied in the context of a large collection of automatically crawled ontologies, DOOR and KANNEL provide a starting point for analyzing the underlying structure of the network of ontologies that is the Semantic Web

    Proceedings of the ECSCW'95 Workshop on the Role of Version Control in CSCW Applications

    Full text link
    The workshop entitled "The Role of Version Control in Computer Supported Cooperative Work Applications" was held on September 10, 1995 in Stockholm, Sweden in conjunction with the ECSCW'95 conference. Version control, the ability to manage relationships between successive instances of artifacts, organize those instances into meaningful structures, and support navigation and other operations on those structures, is an important problem in CSCW applications. It has long been recognized as a critical issue for inherently cooperative tasks such as software engineering, technical documentation, and authoring. The primary challenge for versioning in these areas is to support opportunistic, open-ended design processes requiring the preservation of historical perspectives in the design process, the reuse of previous designs, and the exploitation of alternative designs. The primary goal of this workshop was to bring together a diverse group of individuals interested in examining the role of versioning in Computer Supported Cooperative Work. Participation was encouraged from members of the research community currently investigating the versioning process in CSCW as well as application designers and developers who are familiar with the real-world requirements for versioning in CSCW. Both groups were represented at the workshop resulting in an exchange of ideas and information that helped to familiarize developers with the most recent research results in the area, and to provide researchers with an updated view of the needs and challenges faced by application developers. In preparing for this workshop, the organizers were able to build upon the results of their previous one entitled "The Workshop on Versioning in Hypertext" held in conjunction with the ECHT'94 conference. The following section of this report contains a summary in which the workshop organizers report the major results of the workshop. The summary is followed by a section that contains the position papers that were accepted to the workshop. The position papers provide more detailed information describing recent research efforts of the workshop participants as well as current challenges that are being encountered in the development of CSCW applications. A list of workshop participants is provided at the end of the report. The organizers would like to thank all of the participants for their contributions which were, of course, vital to the success of the workshop. We would also like to thank the ECSCW'95 conference organizers for providing a forum in which this workshop was possible

    Why and How Your Traceability Should Evolve: Insights from an Automotive Supplier

    Full text link
    Traceability is a key enabler of various activities in automotive software and systems engineering and required by several standards. However, most existing traceability management approaches do not consider that traceability is situated in constantly changing development contexts involving multiple stakeholders. Together with an automotive supplier, we analyzed how technology, business, and organizational factors raise the need for flexible traceability. We present how traceability can be evolved in the development lifecycle, from early elicitation of traceability needs to the implementation of mature traceability strategies. Moreover, we shed light on how traceability can be managed flexibly within an agile team and more formally when crossing team borders and organizational borders. Based on these insights, we present requirements for flexible tool solutions, supporting varying levels of data quality, change propagation, versioning, and organizational traceability.Comment: 9 pages, 3 figures, accepted in IEEE Softwar

    Information Integration - the process of integration, evolution and versioning

    Get PDF
    At present, many information sources are available wherever you are. Most of the time, the information needed is spread across several of those information sources. Gathering this information is a tedious and time consuming job. Automating this process would assist the user in its task. Integration of the information sources provides a global information source with all information needed present. All of these information sources also change over time. With each change of the information source, the schema of this source can be changed as well. The data contained in the information source, however, cannot be changed every time, due to the huge amount of data that would have to be converted in order to conform to the most recent schema.\ud In this report we describe the current methods to information integration, evolution and versioning. We distinguish between integration of schemas and integration of the actual data. We also show some key issues when integrating XML data sources

    Change Management: The Core Task of Ontology Versioning and Evolution

    No full text
    Change management as a key issue in ontology versioning and evolution is still not fully addressed, which to some extent forms a barrier against the smooth process of ontology evolution. The key issue in the support of evolving ontologies is to distinguish and recognize the changes during the process of ontology evolution. Most of the current popular work on ontology versioning do not keep a record of the changes in the ontology, thus preventing the user from tracking those changes back and forward, or to at least understand the rational behind those changes. We are proposing an approach to get the evidences of ontology changes, keep track of them, and manage them in an engineering fashion

    OntoMaven: Maven-based Ontology Development and Management of Distributed Ontology Repositories

    Full text link
    In collaborative agile ontology development projects support for modular reuse of ontologies from large existing remote repositories, ontology project life cycle management, and transitive dependency management are important needs. The Apache Maven approach has proven its success in distributed collaborative Software Engineering by its widespread adoption. The contribution of this paper is a new design artifact called OntoMaven. OntoMaven adopts the Maven-based development methodology and adapts its concepts to knowledge engineering for Maven-based ontology development and management of ontology artifacts in distributed ontology repositories.Comment: Pre-print submission to 9th International Workshop on Semantic Web Enabled Software Engineering (SWESE2013). Berlin, Germany, December 2-5, 201

    Metamodel for Tracing Concerns across the Life Cycle

    Get PDF
    Several aspect-oriented approaches have been proposed to specify aspects at different phases in the software life cycle. Aspects can appear within a phase, be refined or mapped to other aspects in later phases, or even disappear.\ud Tracing aspects is necessary to support understandability and maintainability of software systems. Although several approaches have been introduced to address traceability of aspects, two important limitations can be observed. First, tracing is not yet tackled for the entire life cycle. Second, the traceability model that is applied usually refers to elements of specific aspect languages, thereby limiting the reusability of the adopted traceability model.We propose the concern traceability metamodel (CTM) that enables traceability of concerns throughout the life cycle, and which is independent from the aspect languages that are used. CTM can be enhanced to provide additional properties for tracing, and be instantiated to define\ud customized traceability models with respect to the required aspect languages. We have implemented CTM in the tool M-Trace, that uses XML-based representations of the models and XQuery queries to represent tracing information. CTM and M-Trace are illustrated for a Concurrent Versioning System to trace aspects from the requirements level to architecture design level and the implementation
    corecore