243 research outputs found

    Combined schemes for signature and encryption: The public-key and the identity-based setting

    Get PDF
    Consider a scenario in which parties use a public-key encryption scheme and a signature scheme with a single public key/private key pair-so the private key sk is used for both signing and decrypting. Such a simultaneous use of a key is in general considered poor cryptographic practice, but from an efficiency point of view looks attractive. We offer security notions to analyze such violations of key separation. For both the identity-and the non-identity-based setting, we show that-although being insecure in general-for schemes of interest the resulting combined scheme can offer strong security guarantees.First and last author were supported by the Spanish Ministerio de Economía y Competitividad through the project grant MTM-2012-15167

    Hardware Architectures for Post-Quantum Cryptography

    Get PDF
    The rapid development of quantum computers poses severe threats to many commonly-used cryptographic algorithms that are embedded in different hardware devices to ensure the security and privacy of data and communication. Seeking for new solutions that are potentially resistant against attacks from quantum computers, a new research field called Post-Quantum Cryptography (PQC) has emerged, that is, cryptosystems deployed in classical computers conjectured to be secure against attacks utilizing large-scale quantum computers. In order to secure data during storage or communication, and many other applications in the future, this dissertation focuses on the design, implementation, and evaluation of efficient PQC schemes in hardware. Four PQC algorithms, each from a different family, are studied in this dissertation. The first hardware architecture presented in this dissertation is focused on the code-based scheme Classic McEliece. The research presented in this dissertation is the first that builds the hardware architecture for the Classic McEliece cryptosystem. This research successfully demonstrated that complex code-based PQC algorithm can be run efficiently on hardware. Furthermore, this dissertation shows that implementation of this scheme on hardware can be easily tuned to different configurations by implementing support for flexible choices of security parameters as well as configurable hardware performance parameters. The successful prototype of the Classic McEliece scheme on hardware increased confidence in this scheme, and helped Classic McEliece to get recognized as one of seven finalists in the third round of the NIST PQC standardization process. While Classic McEliece serves as a ready-to-use candidate for many high-end applications, PQC solutions are also needed for low-end embedded devices. Embedded devices play an important role in our daily life. Despite their typically constrained resources, these devices require strong security measures to protect them against cyber attacks. Towards securing this type of devices, the second research presented in this dissertation focuses on the hash-based digital signature scheme XMSS. This research is the first that explores and presents practical hardware based XMSS solution for low-end embedded devices. In the design of XMSS hardware, a heterogenous software-hardware co-design approach was adopted, which combined the flexibility of the soft core with the acceleration from the hard core. The practicability and efficiency of the XMSS software-hardware co-design is further demonstrated by providing a hardware prototype on an open-source RISC-V based System-on-a-Chip (SoC) platform. The third research direction covered in this dissertation focuses on lattice-based cryptography, which represents one of the most promising and popular alternatives to today\u27s widely adopted public key solutions. Prior research has presented hardware designs targeting the computing blocks that are necessary for the implementation of lattice-based systems. However, a recurrent issue in most existing designs is that these hardware designs are not fully scalable or parameterized, hence limited to specific cryptographic primitives and security parameter sets. The research presented in this dissertation is the first that develops hardware accelerators that are designed to be fully parameterized to support different lattice-based schemes and parameters. Further, these accelerators are utilized to realize the first software-harware co-design of provably-secure instances of qTESLA, which is a lattice-based digital signature scheme. This dissertation demonstrates that even demanding, provably-secure schemes can be realized efficiently with proper use of software-hardware co-design. The final research presented in this dissertation is focused on the isogeny-based scheme SIKE, which recently made it to the final round of the PQC standardization process. This research shows that hardware accelerators can be designed to offload compute-intensive elliptic curve and isogeny computations to hardware in a versatile fashion. These hardware accelerators are designed to be fully parameterized to support different security parameter sets of SIKE as well as flexible hardware configurations targeting different user applications. This research is the first that presents versatile hardware accelerators for SIKE that can be mapped efficiently to both FPGA and ASIC platforms. Based on these accelerators, an efficient software-hardwareco-design is constructed for speeding up SIKE. In the end, this dissertation demonstrates that, despite being embedded with expensive arithmetic, the isogeny-based SIKE scheme can be run efficiently by exploiting specialized hardware. These four research directions combined demonstrate the practicability of building efficient hardware architectures for complex PQC algorithms. The exploration of efficient PQC solutions for different hardware platforms will eventually help migrate high-end servers and low-end embedded devices towards the post-quantum era

    Combined (identity-based) public key schemes

    Get PDF
    Consider a scenario in which parties use a public key encryption scheme and a signature scheme with a single public key/private key pair---so the private key sk is used for both signing and decrypting. Such a simultaneous use of a key is in general considered poor cryptographic practice, but from an efficiency point of view looks attractive. We offer security notions to analyze such violations of key separation. For both the identity- and the non-identity-based setting, we show that---although being insecure in general---for schemes of interest the resulting combined (identity-based) public key scheme can offer strong security guarantees

    ECGSC: Elliptic Curve based Generalized Signcryption Scheme

    Get PDF
    Signcryption is a new cryptographic primitive that simultaneously fulfills both the functions of signature and encryption. The definition of generalized signcryption is proposed in the paper firstly. Generalized signcryption has a special feature that provides confidentiality or authenticity separately under the condition of specific inputs. So it is more useful than common ones. Based on ECDSA, a signcryption scheme called ECGSC is designed. It will be equivalent to an AtE(OTP$,MAC) encryption scheme or ECDSA when one of party is absent. A third party can verify the signcryption text publicly in the method of ECDSA. Security properties are proven based on Random Oracle mode: confidentiality (CUF-CPA), unforgeability (UF-CMA) and non-repudiation. Compared with the others, ECGSC presents a 78% reduction in computational cost for typical security parameters for high level security applications

    On the Joint Security of Encryption and Signature, Revisited

    Get PDF
    Abstract. We revisit the topic of joint security for combined public key schemes, wherein a single keypair is used for both encryption and signature primitives in a secure manner. While breaking the principle of key separation, such schemes have attractive properties and are sometimes used in practice. We give a general construction for a combined public key scheme having joint security that uses IBE as a component and that works in the standard model. We provide a more efficient direct construction, also in the standard model. We then consider the problem of how to build signcryption schemes from jointly secure combined public key schemes. We provide a construction that uses any such scheme to produce a triple of schemes – signature, encryption, and signcryption – that are jointly secure in an appropriate and strong security model.

    Security of Practical Cryptosystems Using Merkle-Damgard Hash Function in the Ideal Cipher Model

    Get PDF
    Since the Merkle-Damgård (MD) type hash functions are differentiable from ROs even when compression functions are modeled by ideal primitives, there is no guarantee as to the security of cryptosystems when ROs are instantiated with structural hash functions. In this paper, we study the security of the instantiated cryptosystems whereas the hash functions have the well known structure of Merkle-Damgård construction with Stam\u27s type-II compression function (denoted MD-TypeII) in the Ideal Cipher Model (ICM). Note that since the Type-II scheme includes the Davies-Meyer compression function, SHA-256 and SHA-1 have the MD-TypeII structure. We show that OAEP, RSA-KEM, PSEC-KEM, ECIES-KEM and many other encryption schemes are secure when using the MD-TypeII hash function. In order to show this, we customize the indifferentiability framework of Maurer, Renner and Holenstein. We call the customized framework ``indifferentiability with condition\u27\u27. In this framework, for some condition α\alpha that cryptosystem CC satisfies, if hash function HH is indifferentiable from RO under condition α\alpha, CC is secure when RO is instantiated with HH. We note the condition of ``prefix-free\u27\u27 that the above schemes satisfy. We show that the MD-TypeII hash function is indifferentiable from RO under this condition. When the output length of RO is incompatible with that of the hash function, the output size is expanded by Key Derivation Functions (KDFs). Since a KDF is specified as MGF1 in RSA\u27s PKCS #\#1 V2.1, its security discussion is important in practice. We show that, KDFs using the MD-TypeII hash function (KDF-MD-TypeII) are indifferentiable from ROs under this condition of ``prefix-free\u27\u27. Therefore, we can conclude that the above practical encryption schemes are secure even when ROs are instantiated with (KDF-)MD-TypeII hash functions. Dodis, Ristenpart and Shrimpton showed that FDH, PSS, Fiat-Shamir, and so on are secure when RO is instantiated with the MD-TypeII hash function in the ICM, their analyses use the different approach from our approach called indifferentiability from public-use RO (pub-RO). They showed that the above cryptosystems are secure in the pub-RO model and the MD-TypeII hash function is indifferentiable from pub-RO. Since their analyses did not consider the structure of KDFs, there might exist some attack using a KDF\u27s structure. We show that KDFs using pub-RO (KDF-pub-RO) is differentiable from pub-RO. Thus, we cannot trivially extend the result of Dodis et al to the indifferentiability for KDF-MD-TypeII hash functions. We propose a new oracle called private interface leak RO (privleak-RO). We show that KDF-pub-ROs are indifferentiable from privleak-ROs and the above cryptosystems are secure in the privleak-RO model. Therefore, by combining the result of Dodis et al. with our result, we can conclude that the above cryptosystems are secure when ROs are instantiated with KDF-MD-TypeII hash functions. Since OAEP, RSA-KEM, PSEC-KEM, ECIES-KEM and many other encryption schemes are insecure in the pub-RO (privleak-RO) model, we cannot confirm the security of these encryption schemes from the approach of Dodis et al. Therefore, the result of Dodis et al can be supplemented with our result. Consequently, from the two results we can confirm the security of almost practical cryptosystems when ROs are instantiated with (KDF-)MD-TypeII hash functions

    Combining Forward-Security and Leakage-Resilience, Revisited

    Get PDF
    We revisit the combining of forward and leakage resilience, the study of which was initiated by Bellare \emph{et al.} (CANS 2017). Bellare \emph{et al.} combine forward security with continual leakage resilience, dubbed FS+CL. In particular, they construct a FS+CL public-key encryption (PKE) and signatures, but with various shortcomings in terms of leakage rate and assumptions. Our first result significantly improve on Bellare \emph{et al.}\u27s FS+CL PKE scheme, building a FS+CL PKE from any continuous leakage-resilient binary-tree encryption scheme (in contrast Bellare \emph{et al.} required extractable witness encryption which is a suspect assumption). Our construction preserves the leakage rate and hence yield FS+CL PKE with optimal leakage rate from standard assumption. \ind We next explore alternative combinations of forward security and leakage resilience. As argued by Dziembowski \emph{et al.} (CRYPTO 2011), it is desirable to have a model allowing a deterministic key-update procedure, which FS+CL does not. We put forth a combination of forward security with \emph{entropy bounded} leakage (FS+EBL) that allows such key updates. Then we construct FS+EBL non-interactive key exchange (NIKE) based on indistinguishability obfuscation (\iO), and DDH or LWE. Additionally, to make the public keys constant size, we rely on the Superfluous Padding Assumption (SuPA) of Brzuska and Mittelbach (Eprint 2015). Crucially, we \emph{do not} use auxiliary information in SuPA. SuPA notwithstanding, our scheme improves on the recent bounded leakage-resilient NIKE of Li \emph{et al.} (CRYPTO 2020) and also the FS NIKE construction of Pointcheval and Sanders (SCN 2014) from generic multilinear maps. Finally, we argue that using \emph{computational entropy} (FS+CEBL) is more compelling in the context of deterministic updates. We pose achieving a FS+CEBL NIKE as an important open problem

    Quantum Lazy Sampling and Game-Playing Proofs for Quantum Indifferentiability

    Get PDF
    Game-playing proofs constitute a powerful framework for non-quantum cryptographic security arguments, most notably applied in the context of indifferentiability. An essential ingredient in such proofs is lazy sampling of random primitives. We develop a quantum game-playing proof framework by generalizing two recently developed proof techniques. First, we describe how Zhandry's compressed quantum oracles~(Crypto'19) can be used to do quantum lazy sampling of a class of non-uniform function distributions. Second, we observe how Unruh's one-way-to-hiding lemma~(Eurocrypt'14) can also be applied to compressed oracles, providing a quantum counterpart to the fundamental lemma of game-playing. Subsequently, we use our game-playing framework to prove quantum indifferentiability of the sponge construction, assuming a random internal function

    Constant-Size Hierarchical Identity-Based Signature/Signcryption without Random Oracles

    Get PDF
    We construct the first constant-size hierarchical identity-based signature (HIBS) without random oracles - the signature size is O(λs)O(\lambda_s) bits, where λs\lambda_s is the security parameter, and it is independent of the number of levels in the hierarchy. We observe that an efficient hierarchical identity-based signcryption (HIBSC) scheme without random oracles can be compositioned from our HIBS and Boneh, Boyen, and Goh\u27s hierarchical identity-based encryption (HIBE). We further optimize it to a constant-factor efficiency improvement. This is the first constant-size HIBSC without random oracles
    • …
    corecore