37 research outputs found

    Mathematical approach to channel codes with a diagonal matrix structure

    Get PDF
    Digital communications have now become a fundamental part of modern society. In communications, channel coding is an effective way to reduce the information rate down to channel capacity so that the information can be transmitted reliably through the channel. This thesis is devoted to studying the mathematical theory and analysis of channel codes that possess a useful diagonal structure in the parity-check and generator matrices. The first aspect of these codes that is studied is the ability to describe the parity-check matrix of a code with sliding diagonal structure using polynomials. Using this framework, an efficient new method is proposed to obtain a generator matrix G from certain types of parity-check matrices with a so-called defective cyclic block structure. By the nature of this method, G can also be completely described by a polynomial, which leads to efficient encoder design using shift registers. In addition, there is no need for the matrices to be in systematic form, thus avoiding the need for Gaussian elimination. Following this work, we proceed to explore some of the properties of diagonally structured lowdensity parity-check (LDPC) convolutional codes. LDPC convolutional codes have been shown to be capable of achieving the same capacity-approaching performance as LDPC block codes with iterative message-passing decoding. The first crucial property studied is the minimum free distance of LDPC convolutional code ensembles, an important parameter contributing to the error-correcting capability of the code. Here, asymptotic methods are used to form lower bounds on the ratio of the free distance to constraint length for several ensembles of asymptotically good, protograph-based LDPC convolutional codes. Further, it is shown that this ratio of free distance to constraint length for such LDPC convolutional codes exceeds the ratio of minimum distance to block length for corresponding LDPC block codes. Another interesting property of these codes is the way in which the structure affects the performance in the infamous error floor (which occurs at high signal to noise ratio) of the bit error rate curve. It has been suggested that “near-codewords” may be a significant factor affecting decoding failures of LDPC codes over an additive white Gaussian noise (AWGN) channel. A near-codeword is a sequence that satisfies almost all of the check equations. These nearcodewords can be associated with so-called ‘trapping sets’ that exist in the Tanner graph of a code. In the final major contribution of the thesis, trapping sets of protograph-based LDPC convolutional codes are analysed. Here, asymptotic methods are used to calculate a lower bound for the trapping set growth rates for several ensembles of asymptotically good protograph-based LDPC convolutional codes. This value can be used to predict where the error floor will occur for these codes under iterative message-passing decoding

    Practical Issues in GPRAM Development

    Get PDF
    In this thesis, two parts of practical issues in the GPRAM system design are included. The first part is the coding part. The sum-product decoding algorithm of LDPC codes has been refined to fit for the GPRAM hardware implementation. As we all know, communication channel has noise. The noise in telecom system is different from that in GPRAM systems. So the noise should be handled well in the GPRAM design. A noise look-up table was created for FPGA and those noises in the table are quantized. The second part of the thesis is to convert perfect images in video stream to those similar to the coarse images in human vision. GPRAM is an animal like robot in which coarse images are needed more than the fine images in order for us to understand how to GPRAM progresses those images to generate as clear image as we experienced. We use three steps, Point Spread function, inserting Poisson Noise, and introducing Eye fixation movements to mimic the coarse images seen merely from our eyes at the retinal photo-receptor level, i.e., without any brain processing

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    Current Perspectives on Viral Disease Outbreaks

    Get PDF
    The COVID-19 pandemic has reminded the world that infectious diseases are still important. The last 40 years have experienced the emergence of new or resurging viral diseases such as AIDS, ebola, MERS, SARS, Zika, and others. These diseases display diverse epidemiologies ranging from sexual transmission to vector-borne transmission (or both, in the case of Zika). This book provides an overview of recent developments in the detection, monitoring, treatment, and control of several viral diseases that have caused recent epidemics or pandemics
    corecore