612 research outputs found

    Petri net-based approach for web service automation resource coordination

    Get PDF
    In industrial automation, control systems and mechatronic devices are from diverse nature, supplied by different manufacturers and made of different technologies. The adoption of web services principles in an automated production system satisfies some requirements, namely the interoperability of such heterogeneous and distributed environments and the basis for flexibility and reconfigurability. Manufacturing processes require to access resources at different precedence levels and time instances, but in the other way resources may also be shared by different processes. A major challenge is then how individual services may interact, coordinating their activities. Petri nets may be used to describe complex system behaviour and therefore also applied to coordinate such systems. The paper introduces a Petri net based approach for the design, analysis and coordination of systems developed using web services to represent individual and autonomous resources. For this purpose, it is presented a Petri nets computational tool to support the design, validation and coordination of web service based automation systems.info:eu-repo/semantics/publishedVersio

    A High-level Petri Net Based Approach for Modeling and Composition of Web Services

    Get PDF
    AbstractWeb services are modular, self-describing, self-contained and loosely coupled applications, which intercommuni-cate via messages exchanging. The evolution of the internet and the emergence of new technologies like e-business have influenced the use of these last ones, which have become popular. The composition of web services is a topic that attracts the interest of researchers. It offers complex problems process ability even with simple existing web services while cooperating with each other. However, modeling tools and formal techniques for the completion of this task are required.In this paper, we show how simple existing web services can be composed, in order to create a composite service, which offers new features. In this context, we propose an expressive object-oriented Petri net based algebra that succeeds in the complex composition of Web services

    Interaction protocols for cross-organisational workflows

    Get PDF
    Workflow technologies are widely used in industry and commerce to assist in the specification, execution and completion of well defined processes within organisations. As industrial and commercial relations have evolved, based on advances on information and communications technologies, cross-organisational workflow integration has become an important issue. Since organisations can have very different workflows, the creation of compatible workflows so that organisations can collaborate and/or carry out mutual transactions automatically in an integrated fashion can be a very complex and time consuming process. As a consequence, the development of technologies to support the creation and execution of compatible workflows is a most relevant issue. In the present article we introduce the JamSession coordination platform as a tool to implement cross-organisational workflow integration. JamSession is declarative and based on algebraic specification methods, and therefore workflow integration implemented using this platform can profit from formal behavioural analysis, based on which desired features and properties can be verified and/or obtained

    Towards a Formal Framework for Mobile, Service-Oriented Sensor-Actuator Networks

    Full text link
    Service-oriented sensor-actuator networks (SOSANETs) are deployed in health-critical applications like patient monitoring and have to fulfill strong safety requirements. However, a framework for the rigorous formal modeling and analysis of SOSANETs does not exist. In particular, there is currently no support for the verification of correct network behavior after node failure or loss/addition of communication links. To overcome this problem, we propose a formal framework for SOSANETs. The main idea is to base our framework on the \pi-calculus, a formally defined, compositional and well-established formalism. We choose KLAIM, an existing formal language based on the \pi-calculus as the foundation for our framework. With that, we are able to formally model SOSANETs with possible topology changes and network failures. This provides the basis for our future work on prediction, analysis and verification of the network behavior of these systems. Furthermore, we illustrate the real-life applicability of this approach by modeling and extending a use case scenario from the medical domain.Comment: In Proceedings FESCA 2013, arXiv:1302.478

    Workshop on Modelling of Objects, Components, and Agents, Aarhus, Denmark, August 27-28, 2001

    Get PDF
    This booklet contains the proceedings of the workshop Modelling of Objects, Components, and Agents (MOCA'01), August 27-28, 2001. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark and the "Theoretical Foundations of Computer Science" Group at the University of Hamburg, Germany. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop01

    An Automated Framework for BPMN Model Verification Achieving Branch Coverage

    Get PDF
    BPMN model is used in software development process that the procedural logics of software are described in term of graphical representation. Formal verification using colored Petri net (CPN) can be used to prove whether a designed BPMN model is frees of undesirable properties such as deadlock and unreachable task, and meets user requirements or not. Although there are many researches providing the transformation rules and frameworks for automating and verifying the CPN model, the CPN markings determination covering all execution paths is quite cumbersome. This paper proposes an automated BPMN verification framework that integrates the BPMN modeling tool and the CPN model checker together. The designed BPMN model is transformed into a CPN model and control flow graph (CFG). The CFG is used to create the execution paths and to find the interleaved activities. The interleaved activities are then considered for creating the CPN port places and markings by an applying of the branch coverage testing technique. Behaviors of the CPN model are analyzed by using a state space analysis based on the CPN model and automated markings. Our framework has been implemented as an Eclipse BPMN modeler plugin, and it is tested with the five case studies. The results show that our framework is practical. It can automate the CPN models from the BPMN model and guide the designers regarding the CPN markings determination to achieve branch coverage criteria

    Evaluating Resilience of Cyber-Physical-Social Systems

    Get PDF
    Nowadays, protecting the network is not the only security concern. Still, in cyber security, websites and servers are becoming more popular as targets due to the ease with which they can be accessed when compared to communication networks. Another threat in cyber physical social systems with human interactions is that they can be attacked and manipulated not only by technical hacking through networks, but also by manipulating people and stealing users’ credentials. Therefore, systems should be evaluated beyond cy- ber security, which means measuring their resilience as a piece of evidence that a system works properly under cyber-attacks or incidents. In that way, cyber resilience is increas- ingly discussed and described as the capacity of a system to maintain state awareness for detecting cyber-attacks. All the tasks for making a system resilient should proactively maintain a safe level of operational normalcy through rapid system reconfiguration to detect attacks that would impact system performance. In this work, we broadly studied a new paradigm of cyber physical social systems and defined a uniform definition of it. To overcome the complexity of evaluating cyber resilience, especially in these inhomo- geneous systems, we proposed a framework including applying Attack Tree refinements and Hierarchical Timed Coloured Petri Nets to model intruder and defender behaviors and evaluate the impact of each action on the behavior and performance of the system.Hoje em dia, proteger a rede não é a única preocupação de segurança. Ainda assim, na segurança cibernética, sites e servidores estão se tornando mais populares como alvos devido à facilidade com que podem ser acessados quando comparados às redes de comu- nicação. Outra ameaça em sistemas sociais ciberfisicos com interações humanas é que eles podem ser atacados e manipulados não apenas por hackers técnicos através de redes, mas também pela manipulação de pessoas e roubo de credenciais de utilizadores. Portanto, os sistemas devem ser avaliados para além da segurança cibernética, o que significa medir sua resiliência como uma evidência de que um sistema funciona adequadamente sob ataques ou incidentes cibernéticos. Dessa forma, a resiliência cibernética é cada vez mais discutida e descrita como a capacidade de um sistema manter a consciência do estado para detectar ataques cibernéticos. Todas as tarefas para tornar um sistema resiliente devem manter proativamente um nível seguro de normalidade operacional por meio da reconfi- guração rápida do sistema para detectar ataques que afetariam o desempenho do sistema. Neste trabalho, um novo paradigma de sistemas sociais ciberfisicos é amplamente estu- dado e uma definição uniforme é proposta. Para superar a complexidade de avaliar a resiliência cibernética, especialmente nesses sistemas não homogéneos, é proposta uma estrutura que inclui a aplicação de refinamentos de Árvores de Ataque e Redes de Petri Coloridas Temporizadas Hierárquicas para modelar comportamentos de invasores e de- fensores e avaliar o impacto de cada ação no comportamento e desempenho do sistema

    A Formal Approach to Verify Parameterized Protocols in Mobile Cyber-Physical Systems

    Get PDF

    Reo + mCRL2: A Framework for Model-checking Dataflow in Service Compositions

    Get PDF
    The paradigm of service-oriented computing revolutionized the field of software engineering. According to this paradigm, new systems are composed of existing stand-alone services to support complex cross-organizational business processes. Correct communication of these services is not possible without a proper coordination mechanism. The Reo coordination language is a channel-based modeling language that introduces various types of channels and their composition rules. By composing Reo channels, one can specify Reo connectors that realize arbitrary complex behavioral protocols. Several formalisms have been introduced to give semantics to Reo. In their most basic form, they reflect service synchronization and dataflow constraints imposed by connectors. To ensure that the composed system behaves as intended, we need a wide range of automated verification tools to assist service composition designers. In this paper, we present our framework for the verification of Reo using the toolset. We unify our previous work on mapping various semantic models for Reo, namely, constraint automata, timed constraint automata, coloring semantics and the newly developed action constraint automata, to the process algebraic specification language of , address the correctness of this mapping, discuss tool support, and present a detailed example that illustrates the use of Reo empowered with for the analysis of dataflow in service-based process models

    Reo + mCRL2: A Framework for Model-Checking Dataflow in Service Compositions

    Get PDF
    The paradigm of service-oriented computing revolutionized the field of software engineering. According to this paradigm, new systems are composed of existing stand-alone services to support complex cross-organizational business processes. Correct communication of these services is not possible without a proper coordination mechanism. The Reo coordination language is a channel-based modeling language that introduces various types of channels and their composition rules. By composing Reo channels, one can specify Reo connectors that realize arbitrary complex behavioral protocols. Several formalisms have been introduced to give semantics to Reo. In their most basic form, they reflect service synchronization and dataflow constraints imposed by connectors. To ensure that the composed system behaves as intended, we need a wide range of automated verification tools to assist service composition designers. In this paper, we present our framework for the verification of Reo using the mCRL2 toolset. We unify our previous work on mapping various semantic models for Reo, namely, constraint automata, timed constraint automata, coloring semantics and the newly developed action constraint automata, to the process algebraic specification language of mCRL2, address the correctness of this mapping, discuss tool support, and present a detailed example that illustrates the use of Reo empowered with mCRL2 for the analysis of dataflow in service-based process models
    corecore