7,742 research outputs found

    Chip and Skim: cloning EMV cards with the pre-play attack

    Full text link
    EMV, also known as "Chip and PIN", is the leading system for card payments worldwide. It is used throughout Europe and much of Asia, and is starting to be introduced in North America too. Payment cards contain a chip so they can execute an authentication protocol. This protocol requires point-of-sale (POS) terminals or ATMs to generate a nonce, called the unpredictable number, for each transaction to ensure it is fresh. We have discovered that some EMV implementers have merely used counters, timestamps or home-grown algorithms to supply this number. This exposes them to a "pre-play" attack which is indistinguishable from card cloning from the standpoint of the logs available to the card-issuing bank, and can be carried out even if it is impossible to clone a card physically (in the sense of extracting the key material and loading it into another card). Card cloning is the very type of fraud that EMV was supposed to prevent. We describe how we detected the vulnerability, a survey methodology we developed to chart the scope of the weakness, evidence from ATM and terminal experiments in the field, and our implementation of proof-of-concept attacks. We found flaws in widely-used ATMs from the largest manufacturers. We can now explain at least some of the increasing number of frauds in which victims are refused refunds by banks which claim that EMV cards cannot be cloned and that a customer involved in a dispute must therefore be mistaken or complicit. Pre-play attacks may also be carried out by malware in an ATM or POS terminal, or by a man-in-the-middle between the terminal and the acquirer. We explore the design and implementation mistakes that enabled the flaw to evade detection until now: shortcomings of the EMV specification, of the EMV kernel certification process, of implementation testing, formal analysis, or monitoring customer complaints. Finally we discuss countermeasures

    Providing Authentication & Authorization Mechanisms for Active Service Charging

    Get PDF
    Active network technology enables fast deployment of new network services tailored to the specific needs of end users, among others features. Nevertheless proper charging for these new added value services require suitable authentication and authorization mechanisms. In this article we describe a security architecture for SARA (Simple Active Router-Assistant) architecture, an active network platform deployed in the context of the IST-GCAP project. The proposed solution provides all the required security features, and it also grants proper scalability of the overall system, by using a distributed key-generation algorithm.Publicad

    Greater Privacy Protection for Online Credit Card Payment

    Get PDF
    Privacy is always one of the primary concerns in electronic commerce. Consumers must have the right to keep their buying habits and personal information confidential, especially when it comes to on-line credit card payment. Not just only because this payment method has been becoming the trend of modern consuming practice, but also it involves the sensitivity of privacy information. Based on the need-to-know principle, transaction information should be distributed properly among participants to be against aggregation and analysis. In this paper, the privacy required for on-line credit card payment is described, and the privacy protection on three common payment protocols such as SSL, SET and 3D SET are also analyzed in detail. Two solutions are then proposed to enhance privacy protection for cardholder

    A Purchase Protocol with Multichannel Authentication

    Get PDF
    While online shopping are becoming more accepted by people in modern life, cardholders are more concerned about card fraud and the lack of cardholder authentication in the current online credit card payment. This paper proposes a purchase protocol with live cardholder authentication for online transaction which combines telephone banking and online banking together. The order information and payment information are sent though the Internet and encrypted by asymmetric key encryption. The cardholder is authenticated by the card issuing bank ringing back at the customer’s phone number and the cardholder inputting the secure PIN and the amount to pay. The multichannel authentication makes the cardholder feel secure and card fraud difficult. Furthermore, the protocol does not require the cardholder to obtain public key certificates or install additional software for the online transactionPeer reviewe

    An empirical analysis of smart contracts: platforms, applications, and design patterns

    Full text link
    Smart contracts are computer programs that can be consistently executed by a network of mutually distrusting nodes, without the arbitration of a trusted authority. Because of their resilience to tampering, smart contracts are appealing in many scenarios, especially in those which require transfers of money to respect certain agreed rules (like in financial services and in games). Over the last few years many platforms for smart contracts have been proposed, and some of them have been actually implemented and used. We study how the notion of smart contract is interpreted in some of these platforms. Focussing on the two most widespread ones, Bitcoin and Ethereum, we quantify the usage of smart contracts in relation to their application domain. We also analyse the most common programming patterns in Ethereum, where the source code of smart contracts is available.Comment: WTSC 201

    The verification of an industrial payment protocol

    Get PDF

    Anonymous reputation based reservations in e-commerce (AMNESIC)

    Get PDF
    Online reservation systems have grown over the last recent years to facilitate the purchase of goods and services. Generally, reservation systems require that customers provide some personal data to make a reservation effective. With this data, service providers can check the consumer history and decide if the user is trustable enough to get the reserve. Although the reputation of a user is a good metric to implement the access control of the system, providing personal and sensitive data to the system presents high privacy risks, since the interests of a user are totally known and tracked by an external entity. In this paper we design an anonymous reservation protocol that uses reputations to profile the users and control their access to the offered services, but at the same time it preserves their privacy not only from the seller but the service provider

    A SECURE ONLINE PAYMENT SYSTEM

    Get PDF
    An online payment system allows a customer to make a payment to an online merchant or a service provider. Payment gateways, a channel between customers and payment processors, use various security tools to secure a customer’s payment information, usually debit or credit card information, during an online payment. However, the security provided by a payment gateway cannot completely protect a customer’s payment information when a merchant also has the ability to obtain the payment information in some form. Furthermore, not all merchants provide a secure payment environment to their customers and, despite having a standard payment policy, adhere to it. Consequently, this exposes a customer’s payment information to risks of being compromised or misused by merchants or stolen by hackers and spammers. In this thesis we propose a new approach to payment systems in which a customer’s payment information cannot be obtained by a merchant. A customer sends his payment information directly to a payment gateway and a payment gateway, upon verifying the transaction, sends a payment to the appropriate merchant. We use the Pedersen commitment scheme along with dual signatures to securely transfer funds to a merchant and protect a customer’s payment information from any Internet vulnerabilities
    • …
    corecore