45,982 research outputs found

    A JSON Token-Based Authentication and Access Management Schema for Cloud SaaS Applications

    Full text link
    Cloud computing is significantly reshaping the computing industry built around core concepts such as virtualization, processing power, connectivity and elasticity to store and share IT resources via a broad network. It has emerged as the key technology that unleashes the potency of Big Data, Internet of Things, Mobile and Web Applications, and other related technologies, but it also comes with its challenges - such as governance, security, and privacy. This paper is focused on the security and privacy challenges of cloud computing with specific reference to user authentication and access management for cloud SaaS applications. The suggested model uses a framework that harnesses the stateless and secure nature of JWT for client authentication and session management. Furthermore, authorized access to protected cloud SaaS resources have been efficiently managed. Accordingly, a Policy Match Gate (PMG) component and a Policy Activity Monitor (PAM) component have been introduced. In addition, other subcomponents such as a Policy Validation Unit (PVU) and a Policy Proxy DB (PPDB) have also been established for optimized service delivery. A theoretical analysis of the proposed model portrays a system that is secure, lightweight and highly scalable for improved cloud resource security and management.Comment: 6 Page

    Machine-Readable Privacy Certificates for Services

    Full text link
    Privacy-aware processing of personal data on the web of services requires managing a number of issues arising both from the technical and the legal domain. Several approaches have been proposed to matching privacy requirements (on the clients side) and privacy guarantees (on the service provider side). Still, the assurance of effective data protection (when possible) relies on substantial human effort and exposes organizations to significant (non-)compliance risks. In this paper we put forward the idea that a privacy certification scheme producing and managing machine-readable artifacts in the form of privacy certificates can play an important role towards the solution of this problem. Digital privacy certificates represent the reasons why a privacy property holds for a service and describe the privacy measures supporting it. Also, privacy certificates can be used to automatically select services whose certificates match the client policies (privacy requirements). Our proposal relies on an evolution of the conceptual model developed in the Assert4Soa project and on a certificate format specifically tailored to represent privacy properties. To validate our approach, we present a worked-out instance showing how privacy property Retention-based unlinkability can be certified for a banking financial service.Comment: 20 pages, 6 figure

    XML Rewriting Attacks: Existing Solutions and their Limitations

    Full text link
    Web Services are web-based applications made available for web users or remote Web-based programs. In order to promote interoperability, they publish their interfaces in the so-called WSDL file and allow remote call over the network. Although Web Services can be used in different ways, the industry standard is the Service Oriented Architecture Web Services that doesn't rely on the implementation details. In this architecture, communication is performed through XML-based messages called SOAP messages. However, those messages are prone to attacks that can lead to code injection, unauthorized accesses, identity theft, etc. This type of attacks, called XML Rewriting Attacks, are all based on unauthorized, yet possible, modifications of SOAP messages. We present in this paper an explanation of this kind of attack, review the existing solutions, and show their limitations. We also propose some ideas to secure SOAP messages, as well as implementation ideas

    Directed Security Policies: A Stateful Network Implementation

    Full text link
    Large systems are commonly internetworked. A security policy describes the communication relationship between the networked entities. The security policy defines rules, for example that A can connect to B, which results in a directed graph. However, this policy is often implemented in the network, for example by firewalls, such that A can establish a connection to B and all packets belonging to established connections are allowed. This stateful implementation is usually required for the network's functionality, but it introduces the backflow from B to A, which might contradict the security policy. We derive compliance criteria for a policy and its stateful implementation. In particular, we provide a criterion to verify the lack of side effects in linear time. Algorithms to automatically construct a stateful implementation of security policy rules are presented, which narrows the gap between formalization and real-world implementation. The solution scales to large networks, which is confirmed by a large real-world case study. Its correctness is guaranteed by the Isabelle/HOL theorem prover.Comment: In Proceedings ESSS 2014, arXiv:1405.055

    CamFlow: Managed Data-sharing for Cloud Services

    Full text link
    A model of cloud services is emerging whereby a few trusted providers manage the underlying hardware and communications whereas many companies build on this infrastructure to offer higher level, cloud-hosted PaaS services and/or SaaS applications. From the start, strong isolation between cloud tenants was seen to be of paramount importance, provided first by virtual machines (VM) and later by containers, which share the operating system (OS) kernel. Increasingly it is the case that applications also require facilities to effect isolation and protection of data managed by those applications. They also require flexible data sharing with other applications, often across the traditional cloud-isolation boundaries; for example, when government provides many related services for its citizens on a common platform. Similar considerations apply to the end-users of applications. But in particular, the incorporation of cloud services within `Internet of Things' architectures is driving the requirements for both protection and cross-application data sharing. These concerns relate to the management of data. Traditional access control is application and principal/role specific, applied at policy enforcement points, after which there is no subsequent control over where data flows; a crucial issue once data has left its owner's control by cloud-hosted applications and within cloud-services. Information Flow Control (IFC), in addition, offers system-wide, end-to-end, flow control based on the properties of the data. We discuss the potential of cloud-deployed IFC for enforcing owners' dataflow policy with regard to protection and sharing, as well as safeguarding against malicious or buggy software. In addition, the audit log associated with IFC provides transparency, giving configurable system-wide visibility over data flows. [...]Comment: 14 pages, 8 figure

    Security policy architecture for web services environment

    Get PDF
    An enhanced observer is model that observes behaviour of a service and then automatically reports any changes in the state of the service to evaluator model. The e-observer observes the state of a service to determine whether it conforms to and obeys its intended behaviour or policy rules. E-observer techniques address most problems, govern and provide a proven solution that is re-usable in a similar context. This leads to an organisation and formalisation policy which is the engine of the e-observer model. Policies are used to refer to specific security rules for particular systems. They are derived from the goals of management that describe the desired behaviour of distributed heterogeneous systems and networks. These policies should be defended by security which has become a coherent and crucial issue. Security aims to protect these policies whenever possible. It is the first line of protection for resources or assets against events such as loss of availability, unauthorised access or modification of data. The techniques devised to protect information from intruders are general purpose in nature and, therefore, cannot directly enforce security that has no universal definition, the high degree of assurance of security properties of systems used in security-critical areas, such as business, education and financial, is usually achieved by verification. In addition, security policies express the protection requirements of a system in a precise and unambiguous form. They describe the requirements and mechanisms for securing the resources and assets between the sharing parties of a business transaction. However, Service-Oriented Computing (SOC) is a new paradigm of computing that considers "services" as fundamental elements for developing applications/solutions. SOC has many advantages that support IT to improve and increase its capabilities. SOC allows flexibility to be integrated into application development. This allows services to be provided in a highly distributed manner by Web services. Many organisations and enterprises have undertaken developments using SOC. Web services (WSs) are examples of SOC. WSs have become more powerful and sophisticated in recent years and are being used successfully for inter-operable solutions across various networks. The main benefit of web services is that they use machine-to-machine interaction. This leads initially to explore the "Quality" aspect of the services. Quality of Service (QoS) describes many techniques that prioritise one type of traffic or programme that operates across a network connection. Hence, QoS has rules to determine which requests have priority and uses these rules in order to specify their priority to real-time communications. In addition, these rules can be sophisticated and expressed as policies that constrain the behaviour of these services. The rules (policies) should be addressed and enforced by the security mechanism. Moreover, in SOC and in particular web services, services are black boxes where behaviour may be completely determined by its interaction with other services under confederation system. Therefore, we propose the design and implementation of the “behaviour of services,” which is constrained by QoS policies. We formulate and implement novel techniques for web service policy-based QoS, which leads to the development of a framework for observing services. These services interact with each other by verifying them in a formal and systematic manner. This framework can be used to specify security policies in a succinct and unambiguous manner; thus, we developed a set of rules that can be applied inductively to verify the set of traces generated by the specification of our model’s policy. These rules could be also used for verifying the functionality of the system. In order to demonstrate the protection features of information system that is able to specify and concisely describe a set of traces generated, we subsequently consider the design and management of Ponder policy language to express QoS and its associated based on criteria, such as, security. An algorithm was composed for analysing the observations that are constrained by policies, and then a prototype system for demonstrating the observation architecture within the education sector. Finally, an enforcement system was used to successfully deploy the prototype’s infrastructure over Web services in order to define an optimisation model that would capture efficiency requirements. Therefore, our assumption is, tracing and observing the communication between services and then takes the decision based on their behaviour and history. Hence, the big issue here is how do we ensure that some given security requirements are satisfied and enforced? The scenario here is under confederation system and based on the following: System’s components are Web-services. These components are black boxes and designed/built by various vendors. Topology is highly changeable. Consequently, the main issues are: • The proposal, design and development of a prototype of observation system that manages security policy and its associated aspects by evaluating the outcome results via the evaluator model. • Taming the design complexity of the observation system by leaving considerable degrees of freedom for their structure and behaviour and by bestowing upon them certain characteristics, and to learn and adapt with respect to dynamically changing environments.Saudi Arabian Cultural Burea

    Oblivion: Mitigating Privacy Leaks by Controlling the Discoverability of Online Information

    Get PDF
    Search engines are the prevalently used tools to collect information about individuals on the Internet. Search results typically comprise a variety of sources that contain personal information -- either intentionally released by the person herself, or unintentionally leaked or published by third parties, often with detrimental effects on the individual's privacy. To grant individuals the ability to regain control over their disseminated personal information, the European Court of Justice recently ruled that EU citizens have a right to be forgotten in the sense that indexing systems, must offer them technical means to request removal of links from search results that point to sources violating their data protection rights. As of now, these technical means consist of a web form that requires a user to manually identify all relevant links upfront and to insert them into the web form, followed by a manual evaluation by employees of the indexing system to assess if the request is eligible and lawful. We propose a universal framework Oblivion to support the automation of the right to be forgotten in a scalable, provable and privacy-preserving manner. First, Oblivion enables a user to automatically find and tag her disseminated personal information using natural language processing and image recognition techniques and file a request in a privacy-preserving manner. Second, Oblivion provides indexing systems with an automated and provable eligibility mechanism, asserting that the author of a request is indeed affected by an online resource. The automated ligibility proof ensures censorship-resistance so that only legitimately affected individuals can request the removal of corresponding links from search results. We have conducted comprehensive evaluations, showing that Oblivion is capable of handling 278 removal requests per second, and is hence suitable for large-scale deployment
    corecore