12,085 research outputs found

    On Verifying Resource Contracts using Code Contracts

    Full text link
    In this paper we present an approach to check resource consumption contracts using an off-the-shelf static analyzer. We propose a set of annotations to support resource usage specifications, in particular, dynamic memory consumption constraints. Since dynamic memory may be recycled by a memory manager, the consumption of this resource is not monotone. The specification language can express both memory consumption and lifetime properties in a modular fashion. We develop a proof-of-concept implementation by extending Code Contracts' specification language. To verify the correctness of these annotations we rely on the Code Contracts static verifier and a points-to analysis. We also briefly discuss possible extensions of our approach to deal with non-linear expressions.Comment: In Proceedings LAFM 2013, arXiv:1401.056

    Considerations in development of expert systems for real-time space applications

    Get PDF
    Over the years, demand on space systems has increased tremendously and this trend will continue for the near future. Enhanced capabilities of space systems, however, can only be met with increased complexity and sophistication of onboard and ground systems. Artificial Intelligence and expert system techniques have great potential in space applications. Expert systems could facilitate autonomous decision making, improve in-orbit fault diagnosis and repair, enhance performance and reduce reliance on ground support. However, real-time expert systems, unlike conventional off-line consultative systems, have to satisfy certain special stringent requirements before they could be used for onboard space applications. Challenging and interesting new environments are faced while developing expert system space applications. This paper discusses the special characteristics, requirements and typical life cycle issues for onboard expert systems. Further, it also describes considerations in design, development, and implementation which are particularly important to real-time expert systems for space applications

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    A dynamic systems engineering methodology research study. Phase 2: Evaluating methodologies, tools, and techniques for applicability to NASA's systems projects

    Get PDF
    A study of NASA's Systems Management Policy (SMP) concluded that the primary methodology being used by the Mission Operations and Data Systems Directorate and its subordinate, the Networks Division, is very effective. Still some unmet needs were identified. This study involved evaluating methodologies, tools, and techniques with the potential for resolving the previously identified deficiencies. Six preselected methodologies being used by other organizations with similar development problems were studied. The study revealed a wide range of significant differences in structure. Each system had some strengths but none will satisfy all of the needs of the Networks Division. Areas for improvement of the methodology being used by the Networks Division are listed with recommendations for specific action

    Specification and Verification of Commitment-Regulated Data-Aware Multiagent Systems

    Get PDF
    In this paper we investigate multi agent systems whose agent interaction is based on social commitments that evolve over time, in presence of (possibly incomplete) data. In particular, we are interested in modeling and verifying how data maintained by the agents impact on the dynamics of such systems, and on the evolution of their commitments. This requires to lift the commitment-related conditions studied in the literature, which are typically based on propositional logics, to a first-order setting. To this purpose, we propose a rich framework for modeling data-aware commitment-based multiagent systems. In this framework, we study verification of rich temporal properties, establishing its decidability under the condition of “state-boundedness”, i.e., data items come from an infinite domain but, at every time point, each agent can store only a bounded number of them
    corecore