49 research outputs found

    Researching of the problem of solution automation of software systems compatibility

    Get PDF
    © Springer International Publishing AG 2017.During software development is often a lack of backward compatibility between different versions of software components. It will lead to: violation of the ecosystem that is built around this software component, uncoupling community of programmers who use this software in their projects, which entails the general slowdown in the implementation of projects related to this ecosystem and the development of the ecosystem itself; the use in the development of software components that are absolute, which in turn entails problems with safety; the economic costs, during the implementation of a software system migration to a new version of the software component

    Refactoring Boundary

    Get PDF
    We argue that the limit of the propagation of the heap effects of a source code modification is determined by the aliasing structure of method parameters in a trace of the method calls that cross a boundary which partitions the heap. Further, that this aliasing structure is sufficient to uniquely determine the state of the part of the heap which has not been affected. And we give a definition of what it means for a part of the heap to be unaffected by a source code modification. This can be used to determine the correctness of a refactoring

    Regression Verification for Programmable Logic Controller Software

    Get PDF
    Automated production systems are usually driven by Programmable Logic Controllers (PLCs). These systems are long-living - yet have to adapt to changing requirements over time. This paper presents a novel method for regression verification of PLC code, which allows one to prove that a new revision of the plant\u27s software does not break existing intended behavior. Our main contribution is the design, implementation, and evaluation of a regression verification method for PLC code. We also clarify and define the notion of program equivalence for reactive PLC code. Core elements of our method are a translation of PLC code into the SMV input language for model checkers, the adaptation of the coupling invariants concept to reactive systems, and the implementation of a toolchain using a model checker supporting invariant generation. We have successfully evaluated our approach using the Pick-and-Place Unit benchmark case study

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Verification, slicing, and visualization of programs with contracts

    Get PDF
    Tese de doutoramento em Informática (área de especialização em Ciências da Computação)As a specification carries out relevant information concerning the behaviour of a program, why not explore this fact to slice a program in a semantic sense aiming at optimizing it or easing its verification? It was this idea that Comuzzi, in 1996, introduced with the notion of postcondition-based slicing | slice a program using the information contained in the postcondition (the condition Q that is guaranteed to hold at the exit of a program). After him, several advances were made and different extensions were proposed, bridging the two areas of Program Verification and Program Slicing: specifically precondition-based slicing and specification-based slicing. The work reported in this Ph.D. dissertation explores further relations between these two areas aiming at discovering mutual benefits. A deep study of specification-based slicing has shown that the original algorithm is not efficient and does not produce minimal slices. In this dissertation, traditional specification-based slicing algorithms are revisited and improved (their formalization is proposed under the name of assertion-based slicing), in a new framework that is appropriate for reasoning about imperative programs annotated with contracts and loop invariants. In the same theoretical framework, the semantic slicing algorithms are extended to work at the program level through a new concept called contract based slicing. Contract-based slicing, constituting another contribution of this work, allows for the study of a program at an interprocedural level, enabling optimizations in the context of code reuse. Motivated by the lack of tools to prove that the proposed algorithms work in practice, a tool (GamaSlicer) was also developed. It implements all the existing semantic slicing algorithms, in addition to the ones introduced in this dissertation. This third contribution is based on generic graph visualization and animation algorithms that were adapted to work with verification and slice graphs, two specific cases of labelled control low graphs.Tendo em conta que uma especificação contém informação relevante no que diz respeito ao comportamento de um programa, faz sentido explorar este facto para o cortar em fatias (slice) com o objectivo de o optimizar ou de facilitar a sua verificação. Foi precisamente esta ideia que Comuzzi introduziu, em 1996, apresentando o conceito de postcondition-based slicing que consiste em cortar um programa usando a informação contida na pos-condicão (a condição Q que se assegura ser verdadeira no final da execução do programa). Depois da introdução deste conceito, vários avanços foram feitos e diferentes extensões foram propostas, aproximando desta forma duas áreas que até então pareciam desligadas: Program Verification e Program Slicing. Entre estes conceitos interessa-nos destacar as noções de precondition-based slicing e specification-based slicing, que serão revisitadas neste trabalho. Um estudo aprofundado do conceito de specification-based slicing relevou que o algoritmo original não é eficiente e não produz slices mínimos. O trabalho reportado nesta dissertação de doutoramento explora a ideia de tornar mais próximas essas duas áreas visando obter benefícios mútuos. Assim, estabelecendo uma nova base teórica matemática, os algoritmos originais de specification-based slicing são revistos e aperfeiçoados | a sua formalizacão é proposta com o nome de assertion-based slicing. Ainda sobre a mesma base teórica, os algoritmos de slicing são extendidos, de forma a funcionarem ao nível do programa; alem disso introduz-se um novo conceito: contract-based slicing. Este conceito, contract-based slicing, sendo mais um dos contributos do trabalho aqui descrito, possibilita o estudo de um programa ao nível externo de um procedimento, permitindo, por um lado, otimizações no contexto do seu uso, e por outro, a sua reutilização segura. Devido à falta de ferramentas que provem que os algoritmos propostos de facto funcionam na prática, foi desenvolvida uma, com o nome GamaSlicer, que implementa todos os algoritmos existentes de slicing semântico e os novos propostos. Uma terceira contribuição é baseada nos algoritmos genéricos de visualização e animação de grafos que foram adaptados para funcionar com os grafos de controlo de fluxo etiquetados e os grafos de verificação e slicing.Fundação para a Ciência e a Tecnologia (FCT) através da Bolsa de Doutoramento SFRH/BD/33231/2007Projecto RESCUE (contrato FCT sob a referência PTDC / EIA / 65862 /2006)Projecto CROSS (contrato FCT sob a referência PTDC / EIACCO / 108995 / 2008

    Improving systems software security through program analysis and instrumentation

    Get PDF
    Security and reliability bugs are prevalent in systems software. Systems code is often written in low-level languages like C/C++, which offer many benefits but also delegate memory management and type safety to programmers. This invites bugs that cause crashes or can be exploited by attackers to take control of the program. This thesis presents techniques to detect and fix security and reliability issues in systems software without burdening the software developers. First, we present code-pointer integrity (CPI), a technique that combines static analysis with compile-time instrumentation to guarantee the integrity of all code pointers in a program and thereby prevent all control-flow hijack attacks. We also present code-pointer separation (CPS), a relaxation of CPI with better performance properties. CPI and CPS offer substantially better security-to-overhead ratios than the state of the art in control flow hijack defense mechanisms, they are practical (we protect a complete FreeBSD system and over 100 packages like apache and postgresql), effective (prevent all attacks in the RIPE benchmark), and efficient: on SPEC CPU2006, CPS averages 1.2% overhead for C and 1.9% for C/C++, while CPIâs overhead is 2.9% for C and 8.4% for C/C++. Second, we present DDT, a tool for testing closed-source device drivers to automatically find bugs like memory errors or race conditions. DDT showcases a combination of a form of program analysis called selective symbolic execution with virtualization to thoroughly exercise tested drivers and produce detailed, executable traces for every path that leads to a failure. We applied DDT to several closed-source Microsoft-certified Windows device drivers and discovered 14 serious new bugs that can cause crashes or compromise security of the entire system. Third, we present a technique for increasing the scalability of symbolic execution by merging states obtained on different execution paths. State merging reduces the number of states to analyze, but the merged states can be more complex and harder to analyze than their individual components. We introduce query count estimation, a technique to reason about the analysis time of merged states and decide which states to merge in order to achieve optimal net performance of symbolic execution. We also introduce dynamic state merging, a technique for merging states that interacts favorably with search strategies employed by practical bug finding tools, such as DDT and KLEE. Experiments on the 96 GNU Coreutils show that our approach consistently achieves several orders of magnitude speedup over previously published results

    Enabling Machine-aided Cryptographic Design

    Get PDF
    The design of cryptographic primitives such as digital signatures and public-key encryption is very often a manual process conducted by expert cryptographers. This persists despite the fact that many new generic or semi-generic methods have been proposed to construct new primitives by transforming existing ones in interesting ways. However, manually applying transformations to existing primitives can be error-prone, ad-hoc and tedious. A natural question is whether automating the process of applying cryptographic transformations would yield competitive or better results? In this thesis, we explore a compiler-based approach for automatically performing certain cryptographic designs. Similar approaches have been applied to various types of cryptographic protocol design with compelling results. We extend this same approach and show that it also can be effective towards automatically applying cryptographic transformations. We first present our extensible architecture that automates a class of cryptographic transformations on primitives. We then propose several techniques that address the aforementioned question including the Charm cryptographic framework, which enables rapid prototyping of cryptographic primitives from abstract descriptions. We build on this work and show the extent to which transformations can be performed automatically given these descriptions. To illustrate this automation, we present a series of cryptographic tools that demonstrate the effectiveness of our automated approach. Our contributions are listed as follows: - AutoBatch: Batch verification is a transformation that improves signature verification time by efficiently processing many signatures at once. Historically, this manual process has been prone to error and tedious for practitioners. We describe the design of an automated tool that finds efficient batch verification algorithms from abstract descriptions of signature schemes. - AutoGroup: Cryptographers often prefer to describe their pairing-based constructions using symmetric group notation for simplicity, while they prefer asymmetric groups for implementation due to the efficiency gains. The symmetric- to-asymmetric translation is usually performed through manual analysis of a scheme and finding an efficient translation that suits applications can be quite challenging. We present an automated tool that uses SMT solvers to find efficient asymmetric translations from abstract descriptions of cryptographic schemes. - AutoStrong: Strongly unforgeable signatures are desired in practice for a variety of cryptographic protocols. Several transformations exist in the literature that show how to obtain strongly unforgeable signatures from existentially unforgeable ones. We focus on a particular highly-efficient transformation due to Boneh, Shen and Waters that is applicable if the signature satisfies a notion of partitioning. Checking for this property can be challenging and has been less explored in the literature. We present an automated tool that also utilizes SMT solvers to determine when this property is applicable for constructing efficient strongly unforgeable signatures from abstract descriptions. We anticipate that these proof-of-concept tools embody the notion that certain cryptographic transformations can be safely and effectively outsourced to machines
    corecore