276 research outputs found

    SDNsec: Forwarding Accountability for the SDN Data Plane

    Full text link
    SDN promises to make networks more flexible, programmable, and easier to manage. Inherent security problems in SDN today, however, pose a threat to the promised benefits. First, the network operator lacks tools to proactively ensure that policies will be followed or to reactively inspect the behavior of the network. Second, the distributed nature of state updates at the data plane leads to inconsistent network behavior during reconfigurations. Third, the large flow space makes the data plane susceptible to state exhaustion attacks. This paper presents SDNsec, an SDN security extension that provides forwarding accountability for the SDN data plane. Forwarding rules are encoded in the packet, ensuring consistent network behavior during reconfigurations and limiting state exhaustion attacks due to table lookups. Symmetric-key cryptography is used to protect the integrity of the forwarding rules and enforce them at each switch. A complementary path validation mechanism allows the controller to reactively examine the actual path taken by the packets. Furthermore, we present mechanisms for secure link-failure recovery and multicast/broadcast forwarding.Comment: 14 page

    Routing-Verification-as-a-Service (RVaaS): Trustworthy Routing Despite Insecure Providers

    Full text link
    Computer networks today typically do not provide any mechanisms to the users to learn, in a reliable manner, which paths have (and have not) been taken by their packets. Rather, it seems inevitable that as soon as a packet leaves the network card, the user is forced to trust the network provider to forward the packets as expected or agreed upon. This can be undesirable, especially in the light of today's trend toward more programmable networks: after a successful cyber attack on the network management system or Software-Defined Network (SDN) control plane, an adversary in principle has complete control over the network. This paper presents a low-cost and efficient solution to detect misbehaviors and ensure trustworthy routing over untrusted or insecure providers, in particular providers whose management system or control plane has been compromised (e.g., using a cyber attack). We propose Routing-Verification-as-a-Service (RVaaS): RVaaS offers clients a flexible interface to query information relevant to their traffic, while respecting the autonomy of the network provider. RVaaS leverages key features of OpenFlow-based SDNs to combine (passive and active) configuration monitoring, logical data plane verification and actual in-band tests, in a novel manner

    A Brief Overview of the NEBULA Future Internet Architecture

    Get PDF
    NEBULA is a proposal for a Future Internet Architecture. It is based on the assumptions that: (1) cloud computing will comprise an increasing fraction of the application workload offered to an Internet, and (2) that access to cloud computing resources will demand new architectural features from a network. Features that we have identified include dependability, security, flexibility and extensibility, the entirety of which constitute resilience.NEBULA provides resilient networking services using ultrareliable routers, an extensible control plane and use of multiple paths upon which arbitrary policies may be enforced. We report on a prototype system, Zodiac, that incorporates these latter two features

    Modeling Data-Plane Power Consumption of Future Internet Architectures

    Full text link
    With current efforts to design Future Internet Architectures (FIAs), the evaluation and comparison of different proposals is an interesting research challenge. Previously, metrics such as bandwidth or latency have commonly been used to compare FIAs to IP networks. We suggest the use of power consumption as a metric to compare FIAs. While low power consumption is an important goal in its own right (as lower energy use translates to smaller environmental impact as well as lower operating costs), power consumption can also serve as a proxy for other metrics such as bandwidth and processor load. Lacking power consumption statistics about either commodity FIA routers or widely deployed FIA testbeds, we propose models for power consumption of FIA routers. Based on our models, we simulate scenarios for measuring power consumption of content delivery in different FIAs. Specifically, we address two questions: 1) which of the proposed FIA candidates achieves the lowest energy footprint; and 2) which set of design choices yields a power-efficient network architecture? Although the lack of real-world data makes numerous assumptions necessary for our analysis, we explore the uncertainty of our calculations through sensitivity analysis of input parameters

    Cloud Computing, Contractibility, and Network Architecture

    Get PDF
    The emergence of the cloud is heightening the demands on the network in terms of bandwidth, ubiquity, reliability, latency, and route control. Unfortunately, the current architecture was not designed to offer full support for all of these services or to permit money to flow through it. Instead of modifying or adding specific services, the architecture could redesigned to make Internet services contractible by making the relevant information associated with these services both observable and verifiable. Indeed, several on-going research programs are exploring such strategies, including the NSF’s NEBULA, eXpressive Internet Architecture (XIA), ChoiceNet, and the IEEE’s Intercloud projects

    Privacy-preserving network path validation

    Get PDF
    The end-users communicating over a network path currently have no control over the path. For a better quality of service, the source node often opts for a superior (or premium) network path in order to send packets to the destination node. However, the current Internet architecture provides no assurance that the packets indeed follow the designated path. Network path validation schemes address this issue and enable each node present on a network path to validate whether each packet has followed the specific path so far. In this work, we introduce two notions of privacy -- path privacy and index privacy -- in the context of network path validation. We show that, in case a network path validation scheme does not satisfy these two properties, the scheme is vulnerable to certain practical attacks (that affect the reliability, neutrality and quality of service offered by the underlying network). To the best of our knowledge, ours is the first work that addresses privacy issues related to network path validation. We design PrivNPV, a privacy-preserving network path validation protocol, that satisfies both path privacy and index privacy. We discuss several attacks related to network path validation and how PrivNPV defends against these attacks. Finally, we discuss the practicality of PrivNPV based on relevant parameters

    An identity based routing path verification scheme for wireless sensor networks

    Get PDF
    • …
    corecore