17,565 research outputs found

    Convergent finite difference methods for one-dimensional fully nonlinear second order partial differential equations

    Full text link
    This paper develops a new framework for designing and analyzing convergent finite difference methods for approximating both classical and viscosity solutions of second order fully nonlinear partial differential equations (PDEs) in 1-D. The goal of the paper is to extend the successful framework of monotone, consistent, and stable finite difference methods for first order fully nonlinear Hamilton-Jacobi equations to second order fully nonlinear PDEs such as Monge-Amp\`ere and Bellman type equations. New concepts of consistency, generalized monotonicity, and stability are introduced; among them, the generalized monotonicity and consistency, which are easier to verify in practice, are natural extensions of the corresponding notions of finite difference methods for first order fully nonlinear Hamilton-Jacobi equations. The main component of the proposed framework is the concept of "numerical operator", and the main idea used to design consistent, monotone and stable finite difference methods is the concept of "numerical moment". These two new concepts play the same roles as the "numerical Hamiltonian" and the "numerical viscosity" play in the finite difference framework for first order fully nonlinear Hamilton-Jacobi equations. In the paper, two classes of consistent and monotone finite difference methods are proposed for second order fully nonlinear PDEs. The first class contains Lax-Friedrichs-like methods which also are proved to be stable and the second class contains Godunov-like methods. Numerical results are also presented to gauge the performance of the proposed finite difference methods and to validate the theoretical results of the paper.Comment: 23 pages, 8 figues, 11 table

    Rewriting Modulo \beta in the \lambda\Pi-Calculus Modulo

    Full text link
    The lambda-Pi-calculus Modulo is a variant of the lambda-calculus with dependent types where beta-conversion is extended with user-defined rewrite rules. It is an expressive logical framework and has been used to encode logics and type systems in a shallow way. Basic properties such as subject reduction or uniqueness of types do not hold in general in the lambda-Pi-calculus Modulo. However, they hold if the rewrite system generated by the rewrite rules together with beta-reduction is confluent. But this is too restrictive. To handle the case where non confluence comes from the interference between the beta-reduction and rewrite rules with lambda-abstraction on their left-hand side, we introduce a notion of rewriting modulo beta for the lambda-Pi-calculus Modulo. We prove that confluence of rewriting modulo beta is enough to ensure subject reduction and uniqueness of types. We achieve our goal by encoding the lambda-Pi-calculus Modulo into Higher-Order Rewrite System (HRS). As a consequence, we also make the confluence results for HRSs available for the lambda-Pi-calculus Modulo.Comment: In Proceedings LFMTP 2015, arXiv:1507.0759

    A Case Study on Logical Relations using Contextual Types

    Full text link
    Proofs by logical relations play a key role to establish rich properties such as normalization or contextual equivalence. They are also challenging to mechanize. In this paper, we describe the completeness proof of algorithmic equality for simply typed lambda-terms by Crary where we reason about logically equivalent terms in the proof environment Beluga. There are three key aspects we rely upon: 1) we encode lambda-terms together with their operational semantics and algorithmic equality using higher-order abstract syntax 2) we directly encode the corresponding logical equivalence of well-typed lambda-terms using recursive types and higher-order functions 3) we exploit Beluga's support for contexts and the equational theory of simultaneous substitutions. This leads to a direct and compact mechanization, demonstrating Beluga's strength at formalizing logical relations proofs.Comment: In Proceedings LFMTP 2015, arXiv:1507.0759

    Ward Identities and Renormalization of General Gauge Theories

    Get PDF
    We introduce the concept of general gauge theory which includes Yang-Mills models. In the framework of the causal approach and show that the anomalies can appear only in the vacuum sector of the identities obtained from the gauge invariance condition by applying derivatives with respect to the basic fields. Then we provide a general result about the absence of anomalies in higher orders of perturbation theory. This result reduces the renormalizability proof to the study of lower orders of perturbation theory. For the Yang-Mills model one can perform this computation explicitly and obtains its renormalizability in all orders.Comment: 38 pages, LATEX2
    corecore