46 research outputs found

    Interprocedural shape analysis for effectively cutpoint-free programs

    Get PDF
    Abstract. We present a framework for local interprocedural shape analysis that computes procedure summaries as transformers of procedure-local heaps (the parts of the heap that the procedure may reach). A main challenge in procedurelocal shape analysis is the handling of cutpoints, objects that separate the input heap of an invoked procedure from the rest of the heap, which-from the viewpoint of that invocation-is non-accessible and immutable. In this paper, we limit our attention to effectively cutpoint-free programsprograms in which the only objects that separate the callee's heap from the rest of the heap, when considering live reference fields, are the ones pointed to by the actual parameters of the invocation. This limitation (and certain variations of it, which we also describe) simplifies the local-reasoning about procedure calls because the analysis needs not track cutpoints. Furthermore, our analysis (conservatively) verifies that a program is effectively cutpoint-free

    Effective Bug Finding

    Get PDF

    Information Flow Control with System Dependence Graphs - Improving Modularity, Scalability and Precision for Object Oriented Languages

    Get PDF
    Die vorliegende Arbeit befasst sich mit dem Gebiet der statischen Programmanalyse — insbesondere betrachten wir Analysen, deren Ziel es ist, bestimmte Sicherheitseigenschaften, wie etwa Integrität und Vertraulichkeit, für Programme zu garantieren. Hierfür verwenden wir sogenannte Abhängigkeitsgraphen, welche das potentielle Verhalten des Programms sowie den Informationsfluss zwischen einzelnen Programmpunkten abbilden. Mit Hilfe dieser Technik können wir sicherstellen, dass z.B. ein Programm keinerlei Information über ein geheimes Passwort preisgibt. Im Speziellen liegt der Fokus dieser Arbeit auf Techniken, die das Erstellen des Abhängigkeitsgraphen verbessern, da dieser die Grundlage für viele weiterführende Sicherheitsanalysen bildet. Die vorgestellten Algorithmen und Verbesserungen wurden in unser Analysetool Joana integriert und als Open-Source öffentlich verfügbar gemacht. Zahlreiche Kooperationen und Veröffentlichungen belegen, dass die Verbesserungen an Joana auch in der Forschungspraxis relevant sind. Diese Arbeit besteht im Wesentlichen aus drei Teilen. Teil 1 befasst sich mit Verbesserungen bei der Berechnung des Abhängigkeitsgraphen, Teil 2 stellt einen neuen Ansatz zur Analyse von unvollständigen Programmen vor und Teil 3 zeigt aktuelle Verwendungsmöglichkeiten von Joana an konkreten Beispielen. Im ersten Teil gehen wir detailliert auf die Algorithmen zum Erstellen eines Abhängigkeitsgraphen ein, dabei legen wir besonderes Augenmerk auf die Probleme und Herausforderung bei der Analyse von Objektorientierten Sprachen wie Java. So stellen wir z.B. eine Analyse vor, die den durch Exceptions ausgelösten Kontrollfluss präzise behandeln kann. Hauptsächlich befassen wir uns mit der Modellierung von Seiteneffekten, die bei der Kommunikation über Methodengrenzen hinweg entstehen können. Bei Abhängigkeitsgraphen werden Seiteneffekte, also Speicherstellen, die von einer Methode gelesen oder verändert werden, in Form von zusätzlichen Knoten dargestellt. Dabei zeigen wir, dass die Art und Weise der Darstellung, das sogenannte Parametermodel, enormen Einfluss sowohl auf die Präzision als auch auf die Laufzeit der gesamten Analyse hat. Wir erklären die Schwächen des alten Parametermodels, das auf Objektbäumen basiert, und präsentieren unsere Verbesserungen in Form eines neuen Modells mit Objektgraphen. Durch das gezielte Zusammenfassen von redundanten Informationen können wir die Anzahl der berechneten Parameterknoten deutlich reduzieren und zudem beschleunigen, ohne dabei die Präzision des resultierenden Abhängigkeitsgraphen zu verschlechtern. Bereits bei kleineren Programmen im Bereich von wenigen tausend Codezeilen erreichen wir eine im Schnitt 8-fach bessere Laufzeit — während die Präzision des Ergebnisses in der Regel verbessert wird. Bei größeren Programmen ist der Unterschied sogar noch deutlicher, was dazu führt, dass einige unserer Testfälle und alle von uns getesteten Programme ab einer Größe von 20000 Codezeilen nur noch mit Objektgraphen berechenbar sind. Dank dieser Verbesserungen kann Joana mit erhöhter Präzision und bei wesentlich größeren Programmen eingesetzt werden. Im zweiten Teil befassen wir uns mit dem Problem, dass bisherige, auf Abhängigkeitsgraphen basierende Sicherheitsanalysen nur vollständige Programme analysieren konnten. So war es z.B. unmöglich, Bibliothekscode ohne Kenntnis aller Verwendungsstellen zu betrachten oder vorzuverarbeiten. Wir entdeckten bei der bestehenden Analyse eine Monotonie-Eigenschaft, welche es uns erlaubt, Analyseergebnisse von Programmteilen auf beliebige Verwendungsstellen zu übertragen. So lassen sich zum einen Programmteile vorverarbeiten und zum anderen auch generelle Aussagen über die Sicherheitseigenschaften von Programmteilen treffen, ohne deren konkrete Verwendungsstellen zu kennen. Wir definieren die Monotonie-Eigenschaft im Detail und skizzieren einen Beweis für deren Korrektheit. Darauf aufbauend entwickeln wir eine Methode zur Vorverarbeitung von Programmteilen, die es uns ermöglicht, modulare Abhängigkeitsgraphen zu erstellen. Diese Graphen können zu einem späteren Zeitpunkt der jeweiligen Verwendungsstelle angepasst werden. Da die präzise Erstellung eines modularen Abhängigkeitsgraphen sehr aufwendig werden kann, entwickeln wir einen Algorithmus basierend auf sogenannten Zugriffspfaden, der die Skalierbarkeit verbessert. Zuletzt skizzieren wir einen Beweis, der zeigt, dass dieser Algorithmus tatsächlich immer eine konservative Approximation des modularen Graphen berechnet und deshalb die Ergebnisse darauf aufbauender Sicherheitsanalysen weiterhin gültig sind. Im dritten Teil präsentieren wir einige erfolgreiche Anwendungen von Joana, die im Rahmen einer Kooperation mit Ralf Küsters von der Universität Trier entstanden sind. Hier erklären wir zum einen, wie man unser Sicherheitswerkzeug Joana generell verwenden kann. Zum anderen zeigen wir, wie in Kombination mit weiteren Werkzeugen und Techniken kryptographische Sicherheit für ein Programm garantiert werden kann - eine Aufgabe, die bisher für auf Informationsfluss basierende Analysen nicht möglich war. In diesen Anwendungen wird insbesondere deutlich, wie die im Rahmen dieser Arbeit vereinfachte Bedienung die Verwendung von Joana erleichtert und unsere Verbesserungen der Präzision des Ergebnisses die erfolgreiche Analyse erst ermöglichen

    UNGOML: Automated Classification of unsafe Usages in Go

    Full text link
    The Go programming language offers strong protection from memory corruption. As an escape hatch of these protections, it provides the unsafe package. Previous studies identified that this unsafe package is frequently used in real-world code for several purposes, e.g., serialization or casting types. Due to the variety of these reasons, it may be possible to refactor specific usages to avoid potential vulnerabilities. However, the classification of unsafe usages is challenging and requires the context of the call and the program's structure. In this paper, we present the first automated classifier for unsafe usages in Go, UNGOML, to identify what is done with the unsafe package and why it is used. For UNGOML, we built four custom deep learning classifiers trained on a manually labeled data set. We represent Go code as enriched control-flow graphs (CFGs) and solve the label prediction task with one single-vertex and three context-aware classifiers. All three context-aware classifiers achieve a top-1 accuracy of more than 86% for both dimensions, WHAT and WHY. Furthermore, in a set-valued conformal prediction setting, we achieve accuracies of more than 93% with mean label set sizes of 2 for both dimensions. Thus, UNGOML can be used to efficiently filter unsafe usages for use cases such as refactoring or a security audit. UNGOML: https://github.com/stg-tud/ungoml Artifact: https://dx.doi.org/10.6084/m9.figshare.22293052Comment: 13 pages, accepted at the 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR 2023

    Bit-precise procedure-modular termination analysis

    Get PDF
    Non-termination is the root cause of a variety of program bugs, such as hanging programs and denial-of-service vulnerabilities. This makes an automated analysis that can prove the absence of such bugs highly desirable. To scale termination checks to large systems, an interprocedural termination analysis seems essential. This is a largely unexplored area of research in termination analysis, where most effort has focussed on small but difficult single-procedure problems. We present a modular termination analysis for C programs using template-based interprocedural summarisation. Our analysis combines a context-sensitive, over-approximating forward analysis with the inference of under-approximating preconditions for termination. Bit-precise termination arguments are synthesised over lexicographic linear ranking function templates. Our experimental results show the advantage of interprocedural reasoning over monolithic analysis in terms of efficiency, while retaining comparable precision.</jats:p

    Development of a static analysis tool to find securty vulnerabilities in java applications

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2010Includes bibliographical references (leaves: 57-60)Text in English Abstract: Turkish and Englishix, 77 leavesThe scope of this thesis is to enhance a static analysis tool in order to find security limitations in java applications. This will contribute to the removal of some of the existing limitations related with the lack of java source codes. The generally used tools for a static analysis are FindBugs, Jlint, PMD, ESC/Java2, Checkstyle. In this study, it is aimed to utilize PMD static analysis tool which already has been developed to find defects Possible bugs (empty try/catch/finally/switch statements), Dead code (unused local variables, parameters and private methods), Suboptimal code (wasteful String/StringBuffer usage), Overcomplicated expressions (unnecessary if statements for loops that could be while loops), Duplicate code (copied/pasted code means copied/pasted bugs). On the other hand, faults possible unexpected exception, length may be less than zero, division by zero, stream not closed on all paths and should be a static inner class cases were not implemented by PMD static analysis tool. PMD performs syntactic checks and dataflow analysis on program source code.In addition to some detection of clearly erroneous code, many of the .bugs. PMD looks for are stylistic conventions whose violation might be suspicious under some circumstances. For example, having a try statement with an empty catch block might indicate that the caught error is incorrectly discarded. Because PMD includes many detectors for bugs that depend on programming style, PMD includes support for selecting which detectors or groups of detectors should be run. While PMD.s main structure was conserved, boundary overflow vulnerability rules have been implemented to PMD

    Interprocedural program analysis using visibly pushdown Kleene algebra

    Get PDF
    Les analyses interprocédurales automatiques de programmes qui sont basées sur des théories mathématiques rigoureuses sont complexes à réaliser, mais elles sont d'excellents outils pour augmenter notre conance envers les comportements possibles d'un programme. Les méthodes classiques pour réaliser ces analyses sont l'analyse de modè- les, l'interprétation abstraite et la démonstration automatique de théorèmes. La base d'un démonstrateur automatique de théorèmes est une logique ou une algèbre et le choix de celle-ci a un impact sur la complexité de trouver une preuve pour un théorème donné. Cette dissertation développe un formalisme algébrique concis pouvant être utilisé en démonstration automatique de théorèmes. Ce formalisme est appellé algèbre de Kleene à pile visible. Cette dissertation explique comment ce formalisme peut être utilisé pour réaliser des analyses interprocédurales de programmes, comme des vérications formelles et des vérications d'optimisations efectuées par des compilateurs. Cette dissertation apporte aussi des preuves que ces analyses pourraient être automatisées. L'algèbre de Kleene à pile visible est une extension de l'algèbre de Kleene, un excellent formalisme pour réaliser des analyses intraprocédurales de programmes. En bref, l'algèbre de Kleene est la théorie algébrique des automates nis et des expressions régulières. Donc, cette algèbre à elle seule n'est pas appropriée pour faire des analyses interprocédurales de programmes car la puissance des langages non contextuels est souvent nécessaire pour représenter le lot de contrôle d'un tel programme. L'algèbre de Kleene à pile visible étend celle-ci en lui ajoutant une famille d'opérateurs de plus petit point xe qui est basée sur une restriction des grammaires non contextuelles. En fait, cette algèbre axiomatise exactement la théorie équationnelle des langages à pile visibles. Ces langages sont une sous-classe des langages non contextuels et ont été dénis par Alur et Madhusudan pour faire de l'analyse de modèles. La complexité résultante de la théorie équationnelle de l'algèbre proposée est EXPTIME-complète.Automatic interprocedural program analyses based on rigorous mathematical theories are complex to do, but they are great tools to increase our condence in the behaviour of a program. Classical ways of doing them is either by model checking, by abstract interpretation or by automated theorem proving. The basis of an automated theorem prover is a logic or an algebra and the choice of this basis will have an impact in the complexity of nding a proof for a given theorem. This dissertation develops a lightweight algebraic formalism for the automated theorem proving approach. This formalism is called visibly pushdown Kleene algebra. This dissertation explains how to do some interprocedural program analyses, like formal veri cation and verication of compiler optimizations, with this formalism. Evidence is provided that the analyses can be automated. The proposed algebraic formalism is an extension of Kleene algebra, a formalism for doing intraprocedural program analyses. In a nutshell, Kleene algebra is the algebraic theory of nite automata and regular expressions. So, Kleene algebra alone is not well suited to do interprocedural program analyses, where the power of context-free languages is often needed to represent the control flow of a program. Visibly pushdown Kleene algebra extends Kleene algebra by adding a family of implicit least xed point operators based on a restriction of context-free grammars. In fact, visibly pushdown Kleene algebra axiomatises exactly the equational theory of visibly pushdown languages. Visibly pushdown languages are a subclass of context-free languages dened by Alur and Madhusudan in the model checking framework to model check interprocedural programs while remaining decidable. The resulting complexity of the equational theory of visibly pushdown Kleene algebra is EXPTIME-complete whereas that of Kleene algebra is PSPACE-complete

    RacerD: compositional static race detection

    Get PDF
    Automatic static detection of data races is one of the most basic problems in reasoning about concurrency. We present RacerD—a static program analysis for detecting data races in Java programs which is fast, can scale to large code, and has proven effective in an industrial software engineering scenario. To our knowledge, RacerD is the first inter-procedural, compositional data race detector which has been empirically shown to have non-trivial precision and impact. Due to its compositionality, it can analyze code changes quickly, and this allows it to perform continuous reasoning about a large, rapidly changing codebase as part of deployment within a continuous integration ecosystem. In contrast to previous static race detectors, its design favors reporting high-confidence bugs over ensuring their absence. RacerD has been in deployment for over a year at Facebook, where it has flagged over 2500 issues that have been fixed by developers before reaching production. It has been important in enabling the development of new code as well as fixing old code: it helped support the conversion of part of the main Facebook Android app from a single-threaded to a multi-threaded architecture. In this paper we describe RacerD’s design, implementation, deployment and impact
    corecore