593 research outputs found

    Maximum Resilience of Artificial Neural Networks

    Full text link
    The deployment of Artificial Neural Networks (ANNs) in safety-critical applications poses a number of new verification and certification challenges. In particular, for ANN-enabled self-driving vehicles it is important to establish properties about the resilience of ANNs to noisy or even maliciously manipulated sensory input. We are addressing these challenges by defining resilience properties of ANN-based classifiers as the maximal amount of input or sensor perturbation which is still tolerated. This problem of computing maximal perturbation bounds for ANNs is then reduced to solving mixed integer optimization problems (MIP). A number of MIP encoding heuristics are developed for drastically reducing MIP-solver runtimes, and using parallelization of MIP-solvers results in an almost linear speed-up in the number (up to a certain limit) of computing cores in our experiments. We demonstrate the effectiveness and scalability of our approach by means of computing maximal resilience bounds for a number of ANN benchmark sets ranging from typical image recognition scenarios to the autonomous maneuvering of robots.Comment: Timestamp research work conducted in the project. version 2: fix some typos, rephrase the definition, and add some more existing wor

    A novel symbolic approach to verifying epistemic properties of programs

    Get PDF
    We introduce a framework for the symbolic verification of epistemic properties of programs expressed in a class of general-purpose programming languages. To this end, we reduce the verification problem to that of satisfiability of first-order formulae in appropriate theories. We prove the correctness of our reduction and we validate our proposal by applying it to two examples: the dining cryptographers problem and the ThreeBallot voting protocol. We put forward an implementation using existing solvers, and report experimental results showing that the approach can perform better than state-of-the-art symbolic model checkers for temporal-epistemic logic

    A novel symbolic approach to verifying epistemic properties of programs

    Get PDF
    We introduce a framework for the symbolic verification of epistemic properties of programs expressed in a class of general-purpose programming languages. To this end, we reduce the verification problem to that of satisfiability of first-order formulae in appropriate theories. We prove the correctness of our reduction and we validate our proposal by applying it to two examples: the dining cryptographers problem and the ThreeBallot voting protocol. We put forward an implementation using existing solvers, and report experimental results showing that the approach can perform better than state-of-the-art symbolic model checkers for temporal-epistemic logic

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    05431 Abstracts Collection -- Deduction and Applications

    Get PDF
    From 23.10.05 to 28.10.05, the Dagstuhl Seminar 05431 ``Deduction and Applications\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Scalable Synthesis and Verification: Towards Reliable Autonomy

    Get PDF
    We have seen the growing deployment of autonomous systems in our daily life, ranging from safety-critical self-driving cars to dialogue agents. While impactful and impressive, these systems do not often come with guarantees and are not rigorously evaluated for failure cases. This is in part due to the limited scalability of tools available for designing correct-by-construction systems, or verifying them posthoc. Another key limitation is the lack of availability of models for the complex environments with which autonomous systems often have to interact with. In the direction of overcoming these above mentioned bottlenecks to designing reliable autonomous systems, this thesis makes contributions along three fronts. First, we develop an approach for parallelized synthesis from linear-time temporal logic Specifications corresponding to the generalized reactivity (1) fragment. We begin by identifying a special case corresponding to singleton liveness goals that allows for a decomposition of the synthesis problem, which facilitates parallelized synthesis. Based on the intuition from this special case, we propose a more generalized approach for parallelized synthesis that relies on identifying equicontrollable states. Second, we consider learning-based approaches to enable verification at scale for complex systems, and for autonomous systems that interact with black-box environments. For the former, we propose a new abstraction refinement procedure based on machine learning to improve the performance of nonlinear constraint solving algorithms on large-scale problems. For the latter, we present a data-driven approach based on chance-constrained optimization that allows for a system to be evaluated for specification conformance without an accurate model of the environment. We demonstrate this approach on several tasks, including a lane-change scenario with real-world driving data. Lastly, we consider the problem of interpreting and verifying learning-based components such as neural networks. We introduce a new method based on Craig's interpolants for computing compact symbolic abstractions of pre-images for neural networks. Our approach relies on iteratively computing approximations that provably overapproximate and underapproximate the pre-images at all layers. Further, building on existing work for training neural networks for verifiability in the classification setting, we propose extensions that allow us to generalize the approach to more general architectures and temporal specifications.</p
    • …
    corecore