91,249 research outputs found

    Formally-Based Design Evaluation (extended version)

    Get PDF
    This paper investigates specification, verification and test generation for synchronous and asynchronous circuits. The approach is called DILL (Digital Logic in LOTOS). DILL models are discussed for synchronous and asynchronous circuits. Relations for (strong) conformance are defined for verifying a design specification against a high-level specification. An algorithm is also outlined for generating and applying implementation tests based on a specification. Tools have been developed for automated test generation and verification of conformance between an implementation and its specification. The approach is illustrated with various benchmark circuits as case studies

    On Verifying Causal Consistency

    Full text link
    Causal consistency is one of the most adopted consistency criteria for distributed implementations of data structures. It ensures that operations are executed at all sites according to their causal precedence. We address the issue of verifying automatically whether the executions of an implementation of a data structure are causally consistent. We consider two problems: (1) checking whether one single execution is causally consistent, which is relevant for developing testing and bug finding algorithms, and (2) verifying whether all the executions of an implementation are causally consistent. We show that the first problem is NP-complete. This holds even for the read-write memory abstraction, which is a building block of many modern distributed systems. Indeed, such systems often store data in key-value stores, which are instances of the read-write memory abstraction. Moreover, we prove that, surprisingly, the second problem is undecidable, and again this holds even for the read-write memory abstraction. However, we show that for the read-write memory abstraction, these negative results can be circumvented if the implementations are data independent, i.e., their behaviors do not depend on the data values that are written or read at each moment, which is a realistic assumption.Comment: extended version of POPL 201

    The AutoProof Verifier: Usability by Non-Experts and on Standard Code

    Get PDF
    Formal verification tools are often developed by experts for experts; as a result, their usability by programmers with little formal methods experience may be severely limited. In this paper, we discuss this general phenomenon with reference to AutoProof: a tool that can verify the full functional correctness of object-oriented software. In particular, we present our experiences of using AutoProof in two contrasting contexts representative of non-expert usage. First, we discuss its usability by students in a graduate course on software verification, who were tasked with verifying implementations of various sorting algorithms. Second, we evaluate its usability in verifying code developed for programming assignments of an undergraduate course. The first scenario represents usability by serious non-experts; the second represents usability on "standard code", developed without full functional verification in mind. We report our experiences and lessons learnt, from which we derive some general suggestions for furthering the development of verification tools with respect to improving their usability.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    DeepSaucer: Unified Environment for Verifying Deep Neural Networks

    Full text link
    In recent years, a number of methods for verifying DNNs have been developed. Because the approaches of the methods differ and have their own limitations, we think that a number of verification methods should be applied to a developed DNN. To apply a number of methods to the DNN, it is necessary to translate either the implementation of the DNN or the verification method so that one runs in the same environment as the other. Since those translations are time-consuming, a utility tool, named DeepSaucer, which helps to retain and reuse implementations of DNNs, verification methods, and their environments, is proposed. In DeepSaucer, code snippets of loading DNNs, running verification methods, and creating their environments are retained and reused as software assets in order to reduce cost of verifying DNNs. The feasibility of DeepSaucer is confirmed by implementing it on the basis of Anaconda, which provides virtual environment for loading a DNN and running a verification method. In addition, the effectiveness of DeepSaucer is demonstrated by usecase examples

    Abstract Interpretation of Stateful Networks

    Full text link
    Modern networks achieve robustness and scalability by maintaining states on their nodes. These nodes are referred to as middleboxes and are essential for network functionality. However, the presence of middleboxes drastically complicates the task of network verification. Previous work showed that the problem is undecidable in general and EXPSPACE-complete when abstracting away the order of packet arrival. We describe a new algorithm for conservatively checking isolation properties of stateful networks. The asymptotic complexity of the algorithm is polynomial in the size of the network, albeit being exponential in the maximal number of queries of the local state that a middlebox can do, which is often small. Our algorithm is sound, i.e., it can never miss a violation of safety but may fail to verify some properties. The algorithm performs on-the fly abstract interpretation by (1) abstracting away the order of packet processing and the number of times each packet arrives, (2) abstracting away correlations between states of different middleboxes and channel contents, and (3) representing middlebox states by their effect on each packet separately, rather than taking into account the entire state space. We show that the abstractions do not lose precision when middleboxes may reset in any state. This is encouraging since many real middleboxes reset, e.g., after some session timeout is reached or due to hardware failure
    • …
    corecore