990 research outputs found

    Strengthening e-banking security using keystroke dynamics

    Get PDF
    This paper investigates keystroke dynamics and its possible use as a tool to prevent or detect fraud in the banking industry. Given that banks are constantly on the lookout for improved methods to address the menace of fraud, the paper sets out to review keystroke dynamics, its advantages, disadvantages and potential for improving the security of e-banking systems. This paper evaluates keystroke dynamics suitability of use for enhancing security in the banking sector. Results from the literature review found that keystroke dynamics can offer impressive accuracy rates for user identification. Low costs of deployment and minimal change to users modus operandi make this technology an attractive investment for banks. The paper goes on to argue that although this behavioural biometric may not be suitable as a primary method of authentication, it can be used as a secondary or tertiary method to complement existing authentication systems

    Authentication of Students and Students’ Work in E-Learning : Report for the Development Bid of Academic Year 2010/11

    Get PDF
    Global e-learning market is projected to reach $107.3 billion by 2015 according to a new report by The Global Industry Analyst (Analyst 2010). The popularity and growth of the online programmes within the School of Computer Science obviously is in line with this projection. However, also on the rise are students’ dishonesty and cheating in the open and virtual environment of e-learning courses (Shepherd 2008). Institutions offering e-learning programmes are facing the challenges of deterring and detecting these misbehaviours by introducing security mechanisms to the current e-learning platforms. In particular, authenticating that a registered student indeed takes an online assessment, e.g., an exam or a coursework, is essential for the institutions to give the credit to the correct candidate. Authenticating a student is to ensure that a student is indeed who he says he is. Authenticating a student’s work goes one step further to ensure that an authenticated student indeed does the submitted work himself. This report is to investigate and compare current possible techniques and solutions for authenticating distance learning student and/or their work remotely for the elearning programmes. The report also aims to recommend some solutions that fit with UH StudyNet platform.Submitted Versio

    Biometric authentication via keystroke sound

    Full text link
    Unlike conventional “one shot ” biometric authentica-tion schemes, continuous authentication has a number of advantages, such as longer time for sensing, ability to rec-tify authentication decisions, and persistent verification of a user’s identity, which are critical in applications de-manding enhanced security. However, traditional modali-ties such as face, fingerprint and keystroke dynamics, have various drawbacks in continuous authentication scenar-ios. In light of this, this paper proposes a novel non-intrusive and privacy-aware biometric modality that utilizes keystroke sound. Given the keystroke sound recorded by a low-cost microphone, our system extracts discriminative features and performs matching between a gallery and a probe sound stream. Motivated by the concept of digraphs used in modeling keystroke dynamics, we learn a virtual alphabet from keystroke sound segments, from which the digraph latency within pairs of virtual letters as well as other statistical features are used to generate match scores. The resultant multiple scores are indicative of the similar-ities between two sound streams, and are fused to make a final authentication decision. We collect a first-of-its-kind keystroke sound database of 45 subjects typing on a keyboard. Experiments on static text-based authentication, demonstrate the potential as well as limitations of this bio-metric modality. 1

    Cumulative and Ratio Time Evaluations in Keystroke Dynamics To Improve the Password Security Mechanism

    Get PDF
    The password mechanism is widely adopted as a control security system to legitimate access to a database or a transaction content or computing resources. This is because of the low cost of the mechanism, the software routine simplicity, and the facility for the user. But the password mechanism can suffer from serious vulnerabilities, which have to be reduced in some way. An aid comes from the keystroke dynamic evaluation, which uses the rhythm in which an individual types characters on a keyboard. It has been demonstrated how the keystroke dynamics are unique biometric template of the users typing pattern. So, the dwell time (the time a key pressed) and the flight time (the time between “key up” and the next “key down”) are used to verify the real user’s identity. In this work we investigated the keystroke dynamic already reported in literature but with some differences, so to obtain additional benefits. Rather than the commonly adopted absolute times (dwell and fly times), we deal with cumulative and ratio ones (i.e. sum and ratio of dwell and fly times), taking into account that the latest are times which do not change even if the user’s typing style evolves with practic

    Continuous and transparent multimodal authentication: reviewing the state of the art

    Get PDF
    Individuals, businesses and governments undertake an ever-growing range of activities online and via various Internet-enabled digital devices. Unfortunately, these activities, services, information and devices are the targets of cybercrimes. Verifying the user legitimacy to use/access a digital device or service has become of the utmost importance. Authentication is the frontline countermeasure of ensuring only the authorized user is granted access; however, it has historically suffered from a range of issues related to the security and usability of the approaches. They are also still mostly functioning at the point of entry and those performing sort of re-authentication executing it in an intrusive manner. Thus, it is apparent that a more innovative, convenient and secure user authentication solution is vital. This paper reviews the authentication methods along with the current use of authentication technologies, aiming at developing a current state-of-the-art and identifying the open problems to be tackled and available solutions to be adopted. It also investigates whether these authentication technologies have the capability to fill the gap between high security and user satisfaction. This is followed by a literature review of the existing research on continuous and transparent multimodal authentication. It concludes that providing users with adequate protection and convenience requires innovative robust authentication mechanisms to be utilized in a universal level. Ultimately, a potential federated biometric authentication solution is presented; however it needs to be developed and extensively evaluated, thus operating in a transparent, continuous and user-friendly manner

    User habitation in keystroke dynamics based authentication

    Get PDF
    Most computer systems use usernames and passwords for authentication and access control. For long, password security has been framed as a tradeoff between user experience and password security. Trading off one for the other appears to be an inevitable dilemma for single password based security applications. As a new biometric for authenticating access, keystroke dynamics offers great promises in hardening the password mechanism. Our research first investigate the keystroke dynamics based password security by conducting an incremental study on user\u27s habituation process for keystroke dynamics analysis using two distinct types of passwords. The study shows that (1) long and complex passwords are more efficient to be employed in keystroke dynamics systems; and (2) there is a habituation and acclimation process before the user obtains a stable keystroke pattern and the system collects enough training data. Then, based on our findings, we propose a two passwords mechanism that attempts to strike the right balance over user experience and password security by adopting a conventional easy-to-memorize password followed by a long-and-complex phrase for keystroke dynamics verification. Analysis and experimental studies successfully demonstrate the effectiveness of our proposed approach
    • …
    corecore