15 research outputs found

    Logic Programming Foundations of Cyber-Physical Systems

    Get PDF
    Cyber-physical systems (CPS) are becoming ubiquitous. Almost every device today has a controller that reads inputs through sensors, does some processing and then performs actions through actuators. These controllers are discrete digital systems whose inputs are continuous physical quantities and whose outputs control physical (analog) devices. Thus, CPS involve both digital and analog data. In addition, CPS are assumed to run forever, and many CPS may run concurrently with each other. we will develop techniques for faithfully and elegantly modeling CPS. Our approach is based on using constraint logic programming over reals, co-induction, and coroutining

    Towards verification of computation orchestration

    Get PDF
    Recently, a promising programming model called Orc has been proposed to support a structured way of orchestrating distributed Web Services. Orc is intuitive because it offers concise constructors to manage concurrent communication, time-outs, priorities, failure of Web Services or communication and so forth. The semantics of Orc is precisely defined. However, there is no automatic verification tool available to verify critical properties against Orc programs. Our goal is to verify the orchestration programs (written in Orc language) which invoke web services to achieve certain goals. To investigate this problem and build useful tools, we explore in two directions. Firstly, we define a Timed Automata semantics for the Orc language, which we prove is semantically equivalent to the operational semantics of Orc. Consequently, Timed Automata models are systematically constructed from Orc programs. The practical implication is that existing tool supports for Timed Automata, e.g., Uppaal, can be used to simulate and model check Orc programs. An experimental tool has been implemented to automate this approach. Secondly, we start with encoding the operational semantics of Orc language in Constraint Logic Programming (CLP), which allows a systematic translation from Orc to CLP. Powerful constraint solvers like CLP(R) are then used to prove traditional safety properties and beyond, e.g., reachability, deadlock-freeness, lower or upper bound of a time interval, etc. Counterexamples are generated when properties are not satisfied. Furthermore, the stepwise execution traces can be automatically generated as the simulation steps. The two different approaches give an insight into the verification problem of Web Service orchestration. The Timed Automata approach has its merits in visualized simulation and efficient verification supported by the well developed tools. On the other hand, the CPL approach gives better expressiveness in both modeling and verification. The two approaches complement each other, which gives a complete solution for the simulation and verification of Computation Orchestration

    Automatic Static Cost Analysis for Parallel Programs

    Get PDF
    Abstract. Static analysis of the evaluation cost of programs is an extensively studied problem that has many important applications. However, most automatic methods for static cost analysis are limited to sequential evaluation while programs are increasingly evaluated on modern multicore and multiprocessor hardware. This article introduces the first automatic analysis for deriving bounds on the worst-case evaluation cost of parallel first-order functional programs. The analysis is performed by a novel type system for amortized resource analysis. The main innovation is a technique that separates the reasoning about sizes of data structures and evaluation cost within the same framework. The cost semantics of parallel programs is based on call-by-value evaluation and the standard cost measures work and depth. A soundness proof of the type system establishes the correctness of the derived cost bounds with respect to the cost semantics. The derived bounds are multivariate resource polynomials which depend on the sizes of the arguments of a function. Type inference can be reduced to linear programming and is fully automatic. A prototype implementation of the analysis system has been developed to experimentally evaluate the effectiveness of the approach. The experiments show that the analysis infers bounds for realistic example programs such as quick sort for lists of lists, matrix multiplication, and an implementation of sets with lists. The derived bounds are often asymptotically tight and the constant factors are close to the optimal ones

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th European Symposium on Programming, ESOP 2019, which took place in Prague, Czech Republic, in April 2019, held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    Interactive theorem proving and program extraction.

    Get PDF

    Automatic Static Cost Analysis for Parallel Programs

    Get PDF
    Abstract Static analysis of the evaluation cost of programs is an extensively studied problem that has many important applications. However, most automatic methods for static cost analysis are limited to sequential evaluation while programs are increasingly evaluated on modern multicore and multiprocessor hardware. This article introduces the first automatic analysis for deriving bounds on the worst-case evaluation cost of parallel first-order functional programs. The analysis is performed by a novel type system for amortized resource analysis. The main innovation is a technique that separates the reasoning about sizes of data structures and evaluation cost within the same framework. The cost semantics of parallel programs is based on call-by-value evaluation and the standard cost measures work and depth. A soundness proof of the type system establishes the correctness of the derived cost bounds with respect to the cost semantics. The derived bounds are multivariate resource polynomials which depend on the sizes of the arguments of a function. Type inference can be reduced to linear programming and is fully automatic. A prototype implementation of the analysis system has been developed to experimentally evaluate the effectiveness of the approach. The experiments show that the analysis infers bounds for realistic example programs such as quick sort for lists of lists, matrix multiplication, and an implementation of sets with lists. The derived bounds are often asymptotically tight and the constant factors are close to the optimal ones
    corecore