136 research outputs found

    Issues about the Adoption of Formal Methods for Dependable Composition of Web Services

    Full text link
    Web Services provide interoperable mechanisms for describing, locating and invoking services over the Internet; composition further enables to build complex services out of simpler ones for complex B2B applications. While current studies on these topics are mostly focused - from the technical viewpoint - on standards and protocols, this paper investigates the adoption of formal methods, especially for composition. We logically classify and analyze three different (but interconnected) kinds of important issues towards this goal, namely foundations, verification and extensions. The aim of this work is to individuate the proper questions on the adoption of formal methods for dependable composition of Web Services, not necessarily to find the optimal answers. Nevertheless, we still try to propose some tentative answers based on our proposal for a composition calculus, which we hope can animate a proper discussion

    Recovery within long running transactions

    Get PDF
    As computer systems continue to grow in complexity, the possibilities of failure increase. At the same time, the increase in computer system pervasiveness in day-to-day activities brought along increased expectations on their reliability. This has led to the need for effective and automatic error recovery techniques to resolve failures. Transactions enable the handling of failure propagation over concurrent systems due to dependencies, restoring the system to the point before the failure occurred. However, in various settings, especially when interacting with the real world, reversal is not possible. The notion of compensations has been long advocated as a way of addressing this issue, through the specification of activities which can be executed to undo partial transactions. Still, there is no accepted standard theory; the literature offers a plethora of distinct formalisms and approaches. In this survey, we review the compensations from a theoretical point of view by: (i) giving a historic account of the evolution of compensating transactions; (ii) delineating and describing a number of design options involved; (iii) presenting a number of formalisms found in the literature, exposing similarities and differences; (iv) comparing formal notions of compensation correctness; (v) giving insights regarding the application of compensations in practice; and (vi) discussing current and future research trends in the area.peer-reviewe

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    Towards verification of computation orchestration

    Get PDF
    Recently, a promising programming model called Orc has been proposed to support a structured way of orchestrating distributed Web Services. Orc is intuitive because it offers concise constructors to manage concurrent communication, time-outs, priorities, failure of Web Services or communication and so forth. The semantics of Orc is precisely defined. However, there is no automatic verification tool available to verify critical properties against Orc programs. Our goal is to verify the orchestration programs (written in Orc language) which invoke web services to achieve certain goals. To investigate this problem and build useful tools, we explore in two directions. Firstly, we define a Timed Automata semantics for the Orc language, which we prove is semantically equivalent to the operational semantics of Orc. Consequently, Timed Automata models are systematically constructed from Orc programs. The practical implication is that existing tool supports for Timed Automata, e.g., Uppaal, can be used to simulate and model check Orc programs. An experimental tool has been implemented to automate this approach. Secondly, we start with encoding the operational semantics of Orc language in Constraint Logic Programming (CLP), which allows a systematic translation from Orc to CLP. Powerful constraint solvers like CLP(R) are then used to prove traditional safety properties and beyond, e.g., reachability, deadlock-freeness, lower or upper bound of a time interval, etc. Counterexamples are generated when properties are not satisfied. Furthermore, the stepwise execution traces can be automatically generated as the simulation steps. The two different approaches give an insight into the verification problem of Web Service orchestration. The Timed Automata approach has its merits in visualized simulation and efficient verification supported by the well developed tools. On the other hand, the CPL approach gives better expressiveness in both modeling and verification. The two approaches complement each other, which gives a complete solution for the simulation and verification of Computation Orchestration

    Specification and analysis of SOC systems using COWS: a finance case study

    Get PDF
    Service-oriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore many researchers have proposed to use process calculi, a cornerstone of current foundational research on specification and analysis of concurrent and distributed systems. We illustrate this approach by focussing on COWS, a process calculus expressly designed for specifying and combining services, while modelling their dynamic behaviour. We present the calculus and one of the analysis techniques it enables, that is based on the temporal logic SocL and the associated model checker CMC. We demonstrate applicability of our tools by means of a large case study, from the financial domain, which is first specified in COWS, and then analysed by using SocL to express many significant properties and CMC to verify them

    Using formal methods to develop WS-BPEL applications

    Get PDF
    In recent years, WS-BPEL has become a de facto standard language for orchestration of Web Services. However, there are still some well-known difficulties that make programming in WS-BPEL a tricky task. In this paper, we firstly point out major loose points of the WS-BPEL specification by means of many examples, some of which are also exploited to test and compare the behaviour of three of the most known freely available WS-BPEL engines. We show that, as a matter of fact, these engines implement different semantics, which undermines portability of WS-BPEL programs over different platforms. Then we introduce Blite, a prototypical orchestration language equipped with a formal operational semantics, which is closely inspired by, but simpler than, WS-BPEL. Indeed, Blite is designed around some of WS-BPEL distinctive features like partner links, process termination, message correlation, long-running business transactions and compensation handlers. Finally, we present BliteC, a software tool supporting a rapid and easy development of WS-BPEL applications via translation of service orchestrations written in Blite into executable WS-BPEL programs. We illustrate our approach by means of a running example borrowed from the official specification of WS-BPEL

    Analysis and Verification of Service Contracts

    Get PDF

    Activity diagrams: a formal framework to model business processes and code generation

    Get PDF
    Activity Diagram is an important component of the set of diagrams used in UML. The OMG document on UML 2.0 proposes a Petri net based semantics for Activity Diagrams. While Petri net based approach is useful and interesting, it does not exploit the underlying inherent reactive behaviour of activity diagrams. In the first part of the paper, we shall capture activity diagrams in synchronous language framework to arrive at executional models which will be useful in model based design of software. This also enables validated code generation using code generation mechanism of synchronous language environments such as Esterel and its programming environments. Further, the framework leads to scalable verification methods. The traditional semantics proposed in OMG standard need enrichment when the activities are prone to failure and need compensating actions. Such extensions are expected to have applications in modelling complex business processes. In the second part of the paper, we propose an enrichment of the UML Activity Diagrams that include compensable actions. We shall use some of the foundations on Compensable Transactions and Communicating Sequential Processes due to Tony Hoare. This enriched formalism allows UML Activity Diagrams to model business processes that can fail and require compensating actions

    A Calculus for Orchestration of Web Services

    Get PDF
    Service-oriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore, many researchers have proposed to use process calculi, a cornerstone of current foundational research on specification and analysis of concurrent, reactive, and distributed systems. In this paper, we follow this approach and introduce CWS, a process calculus expressly designed for specifying and combining service-oriented applications, while modelling their dynamic behaviour. We show that CWS can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We illustrate the specification style that CWS supports by means of a large case study from the automotive domain and a number of more specific examples drawn from it

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types
    corecore