27 research outputs found

    Verified partial eigenvalue computations using contour integrals for Hermitian generalized eigenproblems

    Full text link
    We propose a verified computation method for partial eigenvalues of a Hermitian generalized eigenproblem. The block Sakurai-Sugiura Hankel method, a contour integral-type eigensolver, can reduce a given eigenproblem into a generalized eigenproblem of block Hankel matrices whose entries consist of complex moments. In this study, we evaluate all errors in computing the complex moments. We derive a truncation error bound of the quadrature. Then, we take numerical errors of the quadrature into account and rigorously enclose the entries of the block Hankel matrices. Each quadrature point gives rise to a linear system, and its structure enables us to develop an efficient technique to verify the approximate solution. Numerical experiments show that the proposed method outperforms a standard method and infer that the proposed method is potentially efficient in parallel.Comment: 15 pages, 4 figures, 1 tabl

    Riesz-projection-based methods for the numerical simulation of resonance phenomena in nanophotonics

    Get PDF
    Resonance effects are ubiquitous in physics and essential for understanding wave propagation and interference. In the field of nanophotonics, devices are often based on the strong confinement of light by resonances. The numerical simulation of resonances plays a crucial role for the design and optimization of the devices. The resonances are electromagnetic field solutions to the time-harmonic source-free Maxwell's equations with loss mechanisms. The corresponding eigenproblems are non-Hermitian due to the losses leading to complex-valued eigenvalues. The material dispersion, which is typically significant in nanophotonics, results in nonlinear eigenproblems. In this thesis, we develop an approach based on Riesz projections for the expansion of electromagnetic fields caused by light sources into resonances. The Riesz projection expansion is computed by contour integration in the complex frequency plane. The numerical realization essentially relies on solving Maxwell's equations with a source term, meaning solving linear systems of equations. For this, Maxwell's equations are directly evaluated at the given frequencies on the integration contours, which implies that linearization of the corresponding nonlinear eigenproblems is not required. This makes Riesz-projection-based approaches a natural choice for dealing with eigenproblems from the field of nanophotonics. We further extend the Riesz projection expansion approach to optical far-field quantities, which is not straightforward due to the spatial divergence of the resonances with increasing distance from the underlying resonators. Based on the ideas of the Riesz projection expansion, we introduce approaches for the calculation of physically relevant eigenvalues and for computing eigenvalue sensitivities. Physically relevant means that the eigenvalues are significant with respect to the resonance expansion of the physical observable of interest. By using physical solutions to Maxwell's equations for the contour integration, the developed numerical methods have a strong relation to physics. The methods can be applied to any material system and to any measurable physical quantity that can be derived from the electric field. We apply the numerical methods to several recent nanophotonic applications, for example, single-photon sources from the field of quantum technology, plasmonic nanostructures characterized by nonlocal material properties, and nanoantennas based on bound states in the continuum. The approaches introduced in this thesis are developed for nanophotonic systems, but can be applied to any resonance problem.Resonanzeffekte treten in allen physikalischen Systemen auf, die durch Wellen beschrieben werden, und sie sind fĂŒr die Beschreibung von Wellenausbreitung und Interferenz unerlĂ€sslich. Auf dem Gebiet der Nanophotonik basieren viele GerĂ€te auf den durch Lichtquellen angeregten Resonanzen mit ihren stark erhöhten elektromagnetischen Feldern. Die numerische Simulation von Resonanzen ist ein wichtiges Hilfsmittel fĂŒr die Entwicklung und Optimierung der GerĂ€te. Die Resonanzen sind die Lösungen der zeitharmonischen quellenfreien Maxwell-Gleichungen mit Verlustmechanismen. Die entsprechenden Eigenwertprobleme sind aufgrund der Verluste nicht-Hermitesch, was zu komplexwertigen Eigenwerten fĂŒhrt. Die Materialdispersion, die in der Nanophotonik typischerweise signifikant ist, fĂŒhrt zu nichtlinearen Eigenwertproblemen. In dieser Dissertation entwickeln wir einen auf der Riesz-Projektion basierenden Ansatz fĂŒr die Expansion von elektromagnetischen Feldern, die von Lichtquellen erzeugt werden, in Resonanzen. Wir berechnen die Riesz-Projektionen durch Konturintegration in der komplexen Frequenzebene. Die numerische Realisierung basiert im Wesentlichen auf der Lösung der Maxwell-Gleichungen mit einem Quellterm, das heißt der Lösung von linearen Gleichungssystemen. Dabei werden die Maxwell-Gleichungen direkt bei den gegebenen Frequenzen auf den Integrationskonturen ausgewertet, sodass eine Linearisierung der entsprechenden nichtlinearen Eigenwertprobleme nicht erforderlich ist. Das macht die auf der Riesz-Projektion basierenden Methoden zu einer natĂŒrlichen Wahl fĂŒr die Behandlung von Eigenwertproblemen aus dem Bereich der Nanophotonik. Wir erweitern den Ansatz der Riesz-Projektions-Expansion auf optische GrĂ¶ĂŸen im Fernfeld, was aufgrund der rĂ€umlichen Divergenz der Resonanzen mit zunehmender Entfernung von den zugrunde liegenden Resonatoren problematisch ist. Basierend auf den Ideen der Riesz-Projektions-Expansion entwickeln wir außerdem Methoden zur Berechnung physikalisch relevanter Eigenwerte und zur Berechnung von SensitivitĂ€ten von Eigenwerten. Physikalisch relevant bedeutet, dass die Eigenwerte in Bezug auf die Resonanzexpansion der interessierenden physikalischen GrĂ¶ĂŸe signifikant sind. Durch die Verwendung physikalischer Lösungen der Maxwell-Gleichungen fĂŒr die Konturintegration haben die entwickelten numerischen Methoden einen starken Bezug zur zugrunde liegenden Physik. Die Methoden können auf jedes Materialsystem und auf jede messbare physikalische GrĂ¶ĂŸe angewendet werden, die sich aus dem elektrischen Feld herleiten lĂ€sst. Wir wenden die numerischen Methoden auf mehrere aktuelle nanophotonische Strukturen an, wie zum Beispiel Einzelphotonenquellen aus dem Bereich der Quantentechnologie, plasmonische Nanostrukturen, die sich durch nichtlokale Materialeigenschaften auszeichnen, und Nanoantennen, die auf gebundenen ZustĂ€nden im Kontinuum basieren. Die in dieser Dissertation vorgestellten AnsĂ€tze werden fĂŒr nanophotonische Systeme entwickelt, lassen sich aber auf jedes Resonanzproblem anwenden

    Complex moment-based methods for differential eigenvalue problems

    Full text link
    This paper considers computing partial eigenpairs of differential eigenvalue problems (DEPs) such that eigenvalues are in a certain region on the complex plane. Recently, based on a "solve-then-discretize" paradigm, an operator analogue of the FEAST method has been proposed for DEPs without discretization of the coefficient operators. Compared to conventional "discretize-then-solve" approaches that discretize the operators and solve the resulting matrix problem, the operator analogue of FEAST exhibits much higher accuracy; however, it involves solving a large number of ordinary differential equations (ODEs). In this paper, to reduce the computational costs, we propose operation analogues of Sakurai-Sugiura-type complex moment-based eigensolvers for DEPs using higher-order complex moments and analyze the error bound of the proposed methods. We show that the number of ODEs to be solved can be reduced by a factor of the degree of complex moments without degrading accuracy, which is verified by numerical results. Numerical results demonstrate that the proposed methods are over five times faster compared with the operator analogue of FEAST for several DEPs while maintaining almost the same high accuracy. This study is expected to promote the "solve-then-discretize" paradigm for solving DEPs and contribute to faster and more accurate solutions in real-world applications.Comment: 26 pages, 9 figure

    Computation of Complex Eigenmodes for Resonators Filled With Gyrotropic Materials

    Get PDF
    In this thesis, the numerical computation of complex eigenmodes of cavity resonators filled with magnetically biased gyrotropic material is demonstrated. For this purpose, a dedicated solver based on the Finite Integration Technique (FIT) has been developed, efficiently implemented as well as successfully verified. Gyrotropic field problems arise, for instance, for the calculation of the resonance frequencies of ferrite-loaded resonators like the GSI SIS 18 cavity. Ferrites exhibit gyromagnetic properties with an anisotropic permeability, which furthermore depends both on frequency and bias field. Similarly, gyroelectric material such as magnetized plasmas can be described by a frequency- and bias field dependent permittivity tensor. Since these material tensors affect the system matrix of the eigenvalue problem, a dedicated solver is required. In this thesis, the FIT with a hexaedral staircase filling is employed for discretization. In the standard formulation, it is, however, limited to diagonally anisotropic materials. Hence, as one of the goals of this thesis, the FIT has been extended to gyromagnetic as well as gyroelectric materials in frequency domain. The derived expressions for the non-diagonal material matrices are fully consistent with the standard FIT when applied to non-gyrotropic materials. Moreover, their structure is manifestly Hermitian in the lossless case, even for non-equidistant grids. Due to the above-mentioned material requirements, the newly developed solver consists of two components: The first one is a magnetostatic solver based on the H_i-algorithm supporting nonlinear material to calculate the magnetic field excited by the bias current. Having obtained the field distribution, the material properties are evaluated locally in each mesh cell at the specified working point. The second component is a Jacobi-Davidson type eigenvalue solver for the iterative solution of the nonlinear eigenproblem. To be capable of handling material losses, the eigensolver also supports non-Hermitian eigenproblems. What is more, efficient parallel computing on machines with distributed memory is possible. To this end, an ordering of the FIT-DOFs different from the standard scheme is implemented, which results in an increased computation to communication ratio. Furthermore, all DOFs that vanish a priori due to several reasons are completely removed from the vectors and matrices. All in all, gyrotropic eigenproblems discretized with several millions of mesh cells can be solved in a reasonable time by the developed solver. The validity of the numerically obtained results is confirmed by thorough comparisons with (semi-)analytical calculations. As an application example, an eigenmode analysis of the GSI SIS 18 cavity is carried out. Since the required material data are not available in the data sheet of the manufacturer, designated measurements of the magnetic characteristics of the Ferroxcube 8C12m ferrite ring cores, which are installed inside the GSI SIS 18 cavities, were performed. Among these characteristics are the complex permeability as a function of frequency and bias magnetic field strength at low radio-frequency power levels as well as the B-H curve. The measurement methods together with the detailed data analysis including the presentation of evaluated data are supplemented to this thesis. The scalar, isotropic permeability retrieved this way is used for the cavity simulations. The obtained values for the resonance frequency and quality factor for the fundamental mode are in accordance with available measurement data. To demonstrate the further potential of the solver, also higher-order modes are investigated and an outlook on possibly advantageous 2-directional bias schemes is given
    corecore