835 research outputs found

    Adiabatic Markovian Dynamics

    Full text link
    We propose a theory of adiabaticity in quantum Markovian dynamics based on a decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of Markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the underlying Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As an application of our theory, we propose a framework for decoherence-assisted computation in noiseless codes under general Markovian noise. We also formulate a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by non-dissipative means.Comment: 4+3 page

    Spectral discretization errors in filtered subspace iteration

    Get PDF
    We consider filtered subspace iteration for approximating a cluster of eigenvalues (and its associated eigenspace) of a (possibly unbounded) selfadjoint operator in a Hilbert space. The algorithm is motivated by a quadrature approximation of an operator-valued contour integral of the resolvent. Resolvents on infinite dimensional spaces are discretized in computable finite-dimensional spaces before the algorithm is applied. This study focuses on how such discretizations result in errors in the eigenspace approximations computed by the algorithm. The computed eigenspace is then used to obtain approximations of the eigenvalue cluster. Bounds for the Hausdorff distance between the computed and exact eigenvalue clusters are obtained in terms of the discretization parameters within an abstract framework. A realization of the proposed approach for a model second-order elliptic operator using a standard finite element discretization of the resolvent is described. Some numerical experiments are conducted to gauge the sharpness of the theoretical estimates

    Computational error bounds for multiple or nearly multiple eigenvalues

    Get PDF
    AbstractIn this paper bounds for clusters of eigenvalues of non-selfadjoint matrices are investigated. We describe a method for the computation of rigorous error bounds for multiple or nearly multiple eigenvalues, and for a basis of the corresponding invariant subspaces. The input matrix may be real or complex, dense or sparse. The method is based on a quadratically convergent Newton-like method; it includes the case of defective eigenvalues, uncertain input matrices and the generalized eigenvalue problem. Computational results show that verified bounds are still computed even if other eigenvalues or clusters are nearby the eigenvalues under consideration

    Pointwise Green's function bounds and stability of relaxation shocks

    Full text link
    We establish sharp pointwise Green's function bounds and consequent linearized and nonlinear stability for smooth traveling front solutions, or relaxation shocks, of general hyperbolic relaxation systems of dissipative type, under the necessary assumptions ([G,Z.1,Z.4]) of spectral stability, i.e., stable point spectrum of the linearized operator about the wave, and hyperbolic stability of the corresponding ideal shock of the associated equilibrium system. This yields, in particular, nonlinear stability of weak relaxation shocks of the discrete kinetic Jin--Xin and Broadwell models. The techniques of this paper should have further application in the closely related case of traveling waves of systems with partial viscosity, for example in compressible gas dynamics or MHD.Comment: 120 pages. Changes since original submission. Corrected typos, esp. energy estimates of Section 7, corrected bad forward references, expanded Remark 1.17, end of introductio

    Pointwise Green function bounds and stability of combustion waves

    Get PDF
    Generalizing similar results for viscous shock and relaxation waves, we establish sharp pointwise Green function bounds and linearized and nonlinear stability for traveling wave solutions of an abstract viscous combustion model including both Majda's model and the full reacting compressible Navier--Stokes equations with artificial viscosity with general multi-species reaction and reaction-dependent equation of state, % under the necessary conditions of strong spectral stability, i.e., stable point spectrum of the linearized operator about the wave, transversality of the profile as a connection in the traveling-wave ODE, and hyperbolic stability of the associated Chapman--Jouguet (square-wave) approximation. Notably, our results apply to combustion waves of any type: weak or strong, detonations or deflagrations, reducing the study of stability to verification of a readily numerically checkable Evans function condition. Together with spectral results of Lyng and Zumbrun, this gives immediately stability of small-amplitude strong detonations in the small heat-release (i.e., fluid-dynamical) limit, simplifying and greatly extending previous results obtained by energy methods by Liu--Ying and Tesei--Tan for Majda's model and the reactive Navier--Stokes equations, respectively
    • …
    corecore