32,003 research outputs found

    Renormalisation of parabolic stochastic PDEs

    Get PDF
    We give a survey of recent result regarding scaling limits of systems from statistical mechanics, as well as the universality of the behaviour of such systems in so-called cross-over regimes. It transpires that some of these universal objects are described by singular stochastic PDEs. We then give a survey of the recently developed theory of regularity structures which allows to build these objects and to describe some of their properties. We place particular emphasis on the renormalisation procedure required to give meaning to these equations. These are expanded notes of the 20th Takagi lectures held at Tokyo University on November 4, 2017

    Damage monitoring in sandwich beams by modal parameter shifts: a comparative study of burst random and sine dwell vibration testing

    Get PDF
    This paper presents an experimental study on the effects of multi-site damage on the vibration response of honeycomb sandwich beams, damaged by two different ways i.e., impact damage and core-only damage simulating damage due to bird or stone impact or due to mishandling during assembly and maintenance. The variation of the modal parameters with different levels of impact energy and density of damage is studied. Vibration tests have been carried out with both burst random and sine dwell testing in order to evaluate the damping estimation efficiency of these methods in the presence of damage. Sine dwell testing is done in both up and down frequency directions in order to detect structural non-linearities. Results show that damping ratio is a more sensitive parameter for damage detection than the natural frequency. Design of experiments (DOE) highlighted density of damage as the factor having a more significant effect on the modal parameters and also proved that sine dwell testing is more suitable for damping estimation in the presence of damage as compared to burst random testing

    Optimal Rate of Direct Estimators in Systems of Ordinary Differential Equations Linear in Functions of the Parameters

    Get PDF
    Many processes in biology, chemistry, physics, medicine, and engineering are modeled by a system of differential equations. Such a system is usually characterized via unknown parameters and estimating their 'true' value is thus required. In this paper we focus on the quite common systems for which the derivatives of the states may be written as sums of products of a function of the states and a function of the parameters. For such a system linear in functions of the unknown parameters we present a necessary and sufficient condition for identifiability of the parameters. We develop an estimation approach that bypasses the heavy computational burden of numerical integration and avoids the estimation of system states derivatives, drawbacks from which many classic estimation methods suffer. We also suggest an experimental design for which smoothing can be circumvented. The optimal rate of the proposed estimators, i.e., their n\sqrt n-consistency, is proved and simulation results illustrate their excellent finite sample performance and compare it to other estimation approaches

    Mobile impurities in integrable models

    Get PDF
    We use a mobile impurity or depleton model to study elementary excitations in one-dimensional integrable systems. For Lieb-Liniger and bosonic Yang-Gaudin models we express two phenomenological parameters characterising renormalised inter- actions of mobile impurities with superfluid background: the number of depleted particles, NN and the superfluid phase drop πJ\pi J in terms of the corresponding Bethe Ansatz solution and demonstrate, in the leading order, the absence of two-phonon scattering resulting in vanishing rates of inelastic processes such as viscosity experienced by the mobile impuritiesComment: 25 pages, minor corrections made to the manuscrip

    Modelling and identification of a six axes industrial robot

    Get PDF
    This paper deals with the modelling and identification of a six axes industrial St šaubli RX90 robot. A non-linear finite element method is used to generate the dynamic equations of motion in a form suitable for both simulation and identification. The latter requires that the equations of motion are linear in the inertia parameters. Joint friction is described by a friction model that describes the friction behaviour in the full velocity range necessary for identification. Experimental parameter identification by means of linear least squares techniques showed to be very suited for identification of the unknown parameters, provided that the problem is properly scaled and that the influence of disturbances is sufficiently analysed and managed. An analysis of the least squares problem by means of a singular value decomposition is preferred as it not only solves the problem of rank deficiency, but it also can correctly deal with measurement noise and unmodelled dynamics

    Lam\'e Parameter Estimation from Static Displacement Field Measurements in the Framework of Nonlinear Inverse Problems

    Get PDF
    We consider a problem of quantitative static elastography, the estimation of the Lam\'e parameters from internal displacement field data. This problem is formulated as a nonlinear operator equation. To solve this equation, we investigate the Landweber iteration both analytically and numerically. The main result of this paper is the verification of a nonlinearity condition in an infinite dimensional Hilbert space context. This condition guarantees convergence of iterative regularization methods. Furthermore, numerical examples for recovery of the Lam\'e parameters from displacement data simulating a static elastography experiment are presented.Comment: 29 page

    From synchronization to Lyapunov exponents and back

    Get PDF
    The goal of this paper is twofold. In the first part we discuss a general approach to determine Lyapunov exponents from ensemble- rather than time-averages. The approach passes through the identification of locally stable and unstable manifolds (the Lyapunov vectors), thereby revealing an analogy with generalized synchronization. The method is then applied to a periodically forced chaotic oscillator to show that the modulus of the Lyapunov exponent associated to the phase dynamics increases quadratically with the coupling strength and it is therefore different from zero already below the onset of phase-synchronization. The analytical calculations are carried out for a model, the generalized special flow, that we construct as a simplified version of the periodically forced Rossler oscillator.Comment: Submitted to Physica
    • 

    corecore