66,888 research outputs found

    Multi-core Code Generation from Polychronous Programs with Time-Predictable Properties (ACVI 2014)

    Get PDF
    Workshop of ACM/IEEE 17th International Conference on Model Driven Engineering Languages and Systems (MoDELS 2014)International audienceSynchronous programming models capture concurrency in computation quite naturally, especially in its dataflow multi-clock (polychronous) flavor. With the rising importance of multi-core processors in safety-critical embedded systems or cyber-physical systems (CPS), there is a growing need for model-driven generation of multi-threaded code for multi-core systems. This paper proposes a build method of timepredictable system on multi-core, based on synchronous-model development. At the modeling level, the synchronous abstraction allows deterministic time semantics. Thus synchronous programming is a good choice for time-predictable system design. At the compiler level, the verified compiler from the synchronous language SIGNAL to our intermediate representation (S-CGA, a variant of guarded actions) and to multi-threaded code, preserves the time predictability. At the platform level, we propose a time-predictable multi-core architecture model in AADL (Architecture Analysis and Design Language), and then we map the multi-threaded code to this model. Therefore, our method integrates time predictability across several design layers

    Synthesis of Specifications and Refinement Maps for Real-Time Object Code Verification

    Get PDF
    Formal verification methods have been shown to be very effective in finding corner-case bugs and ensuring the safety of embedded software systems. The use of formal verification requires a specification, which is typically a high-level mathematical model that defines the correct behavior of the system to be verified. However, embedded software requirements are typically described in natural language. Transforming these requirements into formal specifications is currently a big gap. While there is some work in this area, we proposed solutions to address this gap in the context of refinement-based verification, a class of formal methods that have shown to be effective for embedded object code verification. The proposed approach also addresses both functional and timing requirements and has been demonstrated in the context of safety requirements for software control of infusion pumps. The next step in the verification process is to develop the refinement map, which is a mapping function that can relate an implementation state (in this context, the state of the object code program to be verified) with the specification state. Actually, constructing refinement maps often requires deep understanding and intuitions about the specification and implementation, it is shown very difficult to construct refinement maps manually. To go over this obstacle, the construction of refinement maps should be automated. As a first step toward the automation process, we manually developed refinement maps for various safety properties concerning the software control operation of infusion pumps. In addition, we identified possible generic templates for the construction of refinement maps. Recently, synthesizing procedures of refinement maps for functional and timing specifications are proposed. The proposed work develops a process that significantly increases the automation in the generation of these refinement maps. The refinement maps can then be used for refinement-based verification. This automation procedure has been successfully applied on the transformed safety requirements in the first part of our work. This approach is based on the identified generic refinement map templates which can be increased in the future as the application required
    • …
    corecore