2,513 research outputs found

    A CSP-Based Trajectory for Designing Formally Verified Embedded Control Software

    Get PDF
    This paper presents in a nutshell a procedure for producing formally verified concurrent software. The design paradigm provides means for translating block-diagrammed models of systems from various problem domains in a graphical notation for process-oriented architectures. Briefly presented CASE tool allows code generation both for formal analysis of the models of software and code generation in a target implementation language. For formal analysis a highquality commercial formal checker is used

    Safe and Verifiable Design of Concurrent Java Programs

    Get PDF
    The design of concurrent programs has a reputation for being difficult, and thus potentially dangerous in safetycritical real-time and embedded systems. The recent appearance of Java, whilst cleaning up many insecure aspects of OO programming endemic in C++, suffers from a deceptively simple threads model that is an insecure variant of ideas that are over 25 years old [1]. Consequently, we cannot directly exploit a range of new CASE tools -- based upon modern developments in parallel computing theory -- that can verify and check the design of concurrent systems for a variety of dangers\ud such as deadlock and livelock that otherwise plague us during testing and maintenance and, more seriously, cause catastrophic failure in service. \ud Our approach uses recently developed Java class\ud libraries based on Hoare's Communicating Sequential Processes (CSP); the use of CSP greatly simplifies the design of concurrent systems and, in many cases, a parallel approach often significantly simplifies systems originally approached sequentially. New CSP CASE tools permit designs to be verified against formal specifications\ud and checked for deadlock and livelock. Below we introduce CSP and its implementation in Java and develop a small concurrent application. The formal CSP description of the application is provided, as well as that of an equivalent sequential version. FDR is used to verify the correctness of both implementations, their\ud equivalence, and their freedom from deadlock and livelock

    Schedulability analysis of timed CSP models using the PAT model checker

    Get PDF
    Timed CSP can be used to model and analyse real-time and concurrent behaviour of embedded control systems. Practical CSP implementations combine the CSP model of a real-time control system with prioritized scheduling to achieve efficient and orderly use of limited resources. Schedulability analysis of a timed CSP model of a system with respect to a scheduling scheme and a particular execution platform is important to ensure that the system design satisfies its timing requirements. In this paper, we propose a framework to analyse schedulability of CSP-based designs for non-preemptive fixed-priority multiprocessor scheduling. The framework is based on the PAT model checker and the analysis is done with dense-time model checking on timed CSP models. We also provide a schedulability analysis workflow to construct and analyse, using the proposed framework, a timed CSP model with scheduling from an initial untimed CSP model without scheduling. We demonstrate our schedulability analysis workflow on a case study of control software design for a mobile robot. The proposed approach provides non-pessimistic schedulability results

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    Life of occam-Pi

    Get PDF
    This paper considers some questions prompted by a brief review of the history of computing. Why is programming so hard? Why is concurrency considered an “advanced” subject? What’s the matter with Objects? Where did all the Maths go? In searching for answers, the paper looks at some concerns over fundamental ideas within object orientation (as represented by modern programming languages), before focussing on the concurrency model of communicating processes and its particular expression in the occam family of languages. In that focus, it looks at the history of occam, its underlying philosophy (Ockham’s Razor), its semantic foundation on Hoare’s CSP, its principles of process oriented design and its development over almost three decades into occam-? (which blends in the concurrency dynamics of Milner’s ?-calculus). Also presented will be an urgent need for rationalisation – occam-? is an experiment that has demonstrated significant results, but now needs time to be spent on careful review and implementing the conclusions of that review. Finally, the future is considered. In particular, is there a future

    TRACTABLE DATA-FLOW ANALYSIS FOR DISTRIBUTED SYSTEMS

    No full text
    Automated behavior analysis is a valuable technique in the development and maintainence of distributed systems. In this paper, we present a tractable dataflow analysis technique for the detection of unreachable states and actions in distributed systems. The technique follows an approximate approach described by Reif and Smolka, but delivers a more accurate result in assessing unreachable states and actions. The higher accuracy is achieved by the use of two concepts: action dependency and history sets. Although the technique, does not exhaustively detect all possible errors, it detects nontrivial errors with a worst-case complexity quadratic to the system size. It can be automated and applied to systems with arbitrary loops and nondeterministic structures. The technique thus provides practical and tractable behavior analysis for preliminary designs of distributed systems. This makes it an ideal candidate for an interactive checker in software development tools. The technique is illustrated with case studies of a pump control system and an erroneous distributed program. Results from a prototype implementation are presented

    Reachability in Cooperating Systems with Architectural Constraints is PSPACE-Complete

    Full text link
    The reachability problem in cooperating systems is known to be PSPACE-complete. We show here that this problem remains PSPACE-complete when we restrict the communication structure between the subsystems in various ways. For this purpose we introduce two basic and incomparable subclasses of cooperating systems that occur often in practice and provide respective reductions. The subclasses we consider consist of cooperating systems the communication structure of which forms a line respectively a star.Comment: In Proceedings GRAPHITE 2013, arXiv:1312.706

    Kickstarting Choreographic Programming

    Full text link
    We present an overview of some recent efforts aimed at the development of Choreographic Programming, a programming paradigm for the production of concurrent software that is guaranteed to be correct by construction from global descriptions of communication behaviour
    corecore