2,956 research outputs found

    Timing verification of dynamically reconfigurable logic for Xilinx Virtex FPGA series

    Get PDF
    This paper reports on a method for extending existing VHDL design and verification software available for the Xilinx Virtex series of FPGAs. It allows the designer to apply standard hardware design and verification tools to the design of dynamically reconfigurable logic (DRL). The technique involves the conversion of a dynamic design into multiple static designs, suitable for input to standard synthesis and APR tools. For timing and functional verification after APR, the sections of the design can then be recombined into a single dynamic system. The technique has been automated by extending an existing DRL design tool named DCSTech, which is part of the Dynamic Circuit Switching (DCS) CAD framework. The principles behind the tools are generic and should be readily extensible to other architectures and CAD toolsets. Implementation of the dynamic system involves the production of partial configuration bitstreams to load sections of circuitry. The process of creating such bitstreams, the final stage of our design flow, is summarized

    Quantum Dot Cellular Automata Check Node Implementation for LDPC Decoders

    Get PDF
    The quantum dot Cellular Automata (QCA) is an emerging nanotechnology that has gained significant research interest in recent years. Extremely small feature sizes, ultralow power consumption, and high clock frequency make QCA a potentially attractive solution for implementing computing architectures at the nanoscale. To be considered as a suitable CMOS substitute, the QCA technology must be able to implement complex real-time applications with affordable complexity. Low density parity check (LDPC) decoding is one of such applications. The core of LDPC decoding lies in the check node (CN) processing element which executes actual decoding algorithm and contributes toward overall performance and complexity of the LDPC decoder. This study presents a novel QCA architecture for partial parallel, layered LDPC check node. The CN executes Normalized Min Sum decoding algorithm and is flexible to support CN degree dc up to 20. The CN is constructed using a VHDL behavioral model of QCA elementary circuits which provides a hierarchical bottom up approach to evaluate the logical behavior, area, and power dissipation of the whole design. Performance evaluations are reported for the two main implementations of QCA i.e. molecular and magneti

    Analog Property Checkers: A Ddr2 Case Study

    Get PDF
    The formal specification component of verification can be exported to simulation through the idea of property checkers. The essence of this approach is the automatic construction of an observer from the specification in the form of a program that can be interfaced with a simulator and alert the user if the property is violated by a simulation trace. Although not complete, this lighter approach to formal verification has been effectively used in software and digital hardware to detect errors. Recently, the idea of property checkers has been extended to analog and mixed-signal systems. In this paper, we apply the property-based checking methodology to an industrial and realistic example of a DDR2 memory interface. The properties describing the DDR2 analog behavior are expressed in the formal specification language stl/psl in form of assertions. The simulation traces generated from an actual DDR2 interface design are checked with respect to the stl/psl assertions using the amt tool. The focus of this paper is on the translation of the official (informal and descriptive) specification of two non-trivial DDR2 properties into stl/psl assertions. We study both the benefits and the current limits of such approach

    Modelling and Refinement in CODA

    Full text link
    This paper provides an overview of the CODA framework for modelling and refinement of component-based embedded systems. CODA is an extension of Event-B and UML-B and is supported by a plug-in for the Rodin toolset. CODA augments Event-B with constructs for component-based modelling including components, communications ports, port connectors, timed communications and timing triggers. Component behaviour is specified through a combination of UML-B state machines and Event-B. CODA communications and timing are given an Event-B semantics through translation rules. Refinement is based on Event-B refinement and allows layered construction of CODA models in a consistent way.Comment: In Proceedings Refine 2013, arXiv:1305.563

    Interchange of electronic design through VHDL and EIS

    Get PDF
    The need for both robust and unambiguous electronic designs is a direct requirement of the astonishing growth in design and manufacturing capability during recent years. In order to manage the plethora of designs, and have the design data both interchangeable and interoperable, the Very High Speed Integrated Circuits (VHSIC) program is developing two major standards for the electronic design community. The VHSIC Hardware Description Language (VHDL) is designed to be the lingua franca for transmission of design data between designers and their environments. The Engineering Information System (EIS) is designed to ease the integration of data betweeen diverse design automation systems. This paper describes the rationale for the necessity for these two standards and how they provide a synergistic expressive capability across the macrocosm of design environments

    Building Blocks for Control System Software

    Get PDF
    Software implementation of control laws for industrial systems seem straightforward, but is not. The computer code stemming from the control laws is mostly not more than 10 to 30% of the total. A building-block approach for embedded control system development is advocated to enable a fast and efficient software design process.\ud We have developed the CTJ library, Communicating Threads for JavaÂż,\ud resulting in fundamental elements for creating building blocks to implement communication using channels. Due to the simulate-ability, our building block method is suitable for a concurrent engineering design approach. Furthermore, via a stepwise refinement process, using verification by simulation, the implementation trajectory can be done efficiently
    • 

    corecore